Cistus ladanifer has a well-defined taxonomic identity. 2,2,6-trimethylcyclohexanone may be an authenticity and taxonomic marker. Its traits and applications make it a possible economic resource fitted for Mediterranean areas. Cistus ladanifer is a dominant shrub species endemic to the western Mediterranean region. Due to its dominant nature and its potential ecological, aromatic or pharmacological applications, C. ladanifer has been the object of numerous studies. In this review current knowledge on different aspects of this species is summarized, from its taxonomy to its chemical characterisation or its competitive traits. There are no doubts about the taxonomic entity of C. ladanifer, although the recognition of infraspecific taxa deserves more attention. Given that the fragrant exudate of C. ladanifer holds a very specific composition, one species specific carotenoid, 2,2,6-trimethylcyclohexanone, derivative is proposed as an authenticity marker for uses of C. ladanifer in pharmacological or aromatic industries. Evidence is also gathered on the extreme adaptation of C. ladanifer to stressful conditions in the Mediterranean region, such as the ability to survive in low hydric and high solar exposition conditions, presistence in poor and contaminated soils, and growth inhibition of several other plants through the release of allelochemicals. Thus, the finding of potential applications for this plant may contribute to enhance the economic dimension of derelict lands, such as mine tailings or poor agricultural Mediterranean areas.
The combination of genotypic selection, targeted and improved cultivation, and processing techniques for specific applications gives C. ladanifer the potential to be used as a valuable resource in Mediterranean areas with poor agronomic advantages. Cistus ladanifer (rockrose) is a perennial shrub, well adapted to the Mediterranean climate and possibly to upcoming environmental changes. As a sequence to a thorough review on taxonomic, morphological, chemical and competitive aspects of C. ladanifer, the research team focuses here on the economic potential of C. ladanifer: from production to applications, highlighting also known biological activities of extracts and their compounds. The use of this natural resource may be a viable solution for poor and contaminated soils with no need for large agricultural techniques, because this species is highly resistant to pests, diseases and extreme environmental factors. In addition, this species reveals interesting aptitudes that can be applied to food, pharmaceutical, phytochemical and biofuel industries. The final synthesis highlights research lines toward the exploitation of this neglected resource, such as selection of plant lines for specific applications and development of agronomic and processing techniques.
In Opuntia spp., the cladode tissues contain many polysaccharides and secondary metabolites that interfere with obtaining high-quality deoxyribonucleic acid (DNA), using currently available methods. To circumvent this problem, three commercial kits, three modified versions of the conventional cetyltrimethylammonium bromide method (CTAB) method and one combined method were tested in Opuntia ficus-indica, O. robusta, O. dillenii and O. elata species. We obtained a rapid and simple protocol that allows the extraction of DNA from all the tested species with good DNA yield and purity, namely, the combined method. With this method (DNeasy® Plant Mini Kit combined with the CTAB method), DNA yields from 13.2 ± 7.8 to 15.9 ± 11.3 µg g of fresh tissue were obtained in the four Opuntia species. The purity, evaluated by the ratio A/A ratio, ranged from 1.67 ± 0.12 to 2.01 ± 0.25, revealing low levels of problematic metabolites. The extracted DNA quality was confirmed by amplifying a set of nuclear microsatellites obtained for the genus. Reliable reproducible bands and electropherogram profiles were obtained. The combined method has potential to be universal for good-quality DNA extraction in cacti, particularly in the Opuntia genus and other difficult-to-extract species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.