The purpose of this study was to investigate stressful responses during a 6-week training protocol in young Lusitano horses used for dressage. The hypothesis was that the proposed training protocol would improve fitness and ensure the welfare of the animals by reducing stress predictors. Nine 4-year-old horses were evaluated before (M1) and six weeks after (M2) beginning a training protocol. The training program was performed six times per week and included 40–80 min of individually intensity-adjusted preparatory exercises for dressage. For both moments, the horses were examined before (T0) and after (T1) dressage simulation tests (DST), and at 30 (T2) and 240 min (T3) during the recovery period. Blood samples were taken to determine the horses’ cortisol levels, total WBC, and neutrophil and lymphocyte counts. All variables were analyzed by one-way ANOVA and Tukey tests, with p ≤ 0.05. After training, there was a significant reduction in cortisol (p = 0.0133), HR (p = 0.0283), total WBC (p < 0.0001), and neutrophil (p < 0.0001) and lymphocyte (p = 0.0341) counts. Other findings included an increase in HRV parameters related to a cardiac vagal modulation. In conclusion, the chosen training protocol led to better fitness as the horses worked more intensively with lower cardiovascular requirements, and they showed blunted cortisol responses at M2. Such data can be used to evaluate performance, but also to predict the welfare of athletic horses.
In the last 20 years, several contributions have been published on what concerns the conceptual and empirical connections between self-processes. However, only a limited number of publications addressed the viability of those processes to characterize mental health in neurotypical subjects with a normative pattern of neurodevelopment. Furthermore, even fewer experiments focused explicitly on the complexity of studying neurotypical phenomenal data. On the one hand, this normative pattern is commonly associated with mental health and a multifaceted self-concept and well-being. On the other hand, well-being is often related to a healthy cognitive life. However, how such intricate and complex relation between self-processes is established in neurotypical subjects requires further evidence. The novelty of this work is thus studying the first-person experience, which is correlated with the mental events aroused by a cognitive behavioral intervention. The prior methodology that led to the complete characterization of a neurotypical sample was already published by the authors, although the materials, the methods, the sample screening, and the sample size study required further explanation and exploration. This paper’s innovation is hence the phenomenological assessment of subjects’ self-regulation, which is used for mental health profiling, providing the basis for subsequent molecular typing. For that matter, a convenience sample of 128 (19–25-year-old) neurotypical young adults, healthy university students at the University of Lisbon, non-medicated and with no serious, uncontrolled, or chronic diseases, are characterized according to their cognitive functioning and self-concept. The procedure comprised (i) a mental status examination (psychological assessment) and (ii) a psychological intervention, i.e., a single cognitive behavioral intervention (intervention protocol). The psychological assessment was a standardized and structured clinical interview, which comprised the use of 4 psychological scales complementary to the classical Mental Status Examination (MSE). The intervention protocol applied a combined exercise of psychophysical training and autobiographical-self memory-recalling. The results permitted identifying and isolating four different subgroups (self awareness, self consciousness, reflective self, and pre-reflective self) in neurotypical subjects with discrete self-processes. The outcome of this study is screening four different aspects of self-reflection and the isolation between various forms of self-directed attention and their interconnections in these four mental health strata. The practical implication of this study is to fulfill an a priori pre-molecular assessment of self-regulation with separate cognitive characteristics. The reliability of these mental strata, their distinct neurophysiology, and discrete molecular fingerprint will be tested in a future publication by in silico characterization, total protein profiling, and simultaneous immunodetection of the neuropeptide and neuroimmune response of the same participants.
Many scientific publications that affect machine learning have set the basis for pattern recognition and symmetry. In this paper, we revisit the concept of “Mind-life continuity” published by the authors, testing the symmetry between cognitive and electrophoretic strata. We opted for machine learning to analyze and understand the total protein profile of neurotypical subjects acquired by capillary electrophoresis. Capillary electrophoresis permits a cost-wise solution but lacks modern proteomic techniques’ discriminative and quantification power. To compensate for this problem, we developed tools for better data visualization and exploration in this work. These tools permitted us to examine better the total protein profile of 92 young adults, from 19 to 25 years old, healthy university students at the University of Lisbon, with no serious, uncontrolled, or chronic diseases affecting the nervous system. As a result, we created a graphical user interface toolbox named MODeLING.Vis, which showed specific expected protein profiles present in saliva in our neurotypical sample. The developed toolbox permitted data exploration and hypothesis testing of the biomolecular data. In conclusion, this analysis offered the data mining of the acquired neuroproteomics data in the molecular weight range from 9.1 to 30 kDa. This molecular weight range, obtained by pattern recognition of our dataset, is characteristic of the small neuroimmune molecules and neuropeptides. Consequently, MODeLING.Vis offers a machine-learning solution for probing into the neurocognitive response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.