In recent years, the steel industry has undertaken efforts to increase energy efficiency by reducing energy consumption and recover otherwise lost heat. About 60% of the energy consumed in a steel plant is lost in cooling beds where the hot steel beams are cooled down by natural convection and radiation. In this paper, the potential of heat recovery by radiation in a cooling bed was determined. Firstly, numerical simulations of the heat flux were done and validated with experimental measures. Secondly, a pilot test to recover the heat with modified solar absorbers was installed at the side of the cooling bed. The standard solar panels were painted with high absorption paint in the wavelength range of the hot beams. The results showed that up to 1 kW/m 2 could be recovered with a temperature of 70°C at the side of the cooling bed, with a thermal efficiency of approximately 40%. As the experimental results were promising, further research is suggested to find an adequate selective coating and glazing. This would maximize the absorption at the wavelength range of the hot beams and minimize the emissivity at operational temperature of the absorber (100°C). Additionally, it would be of interest to find the optimum position for the absorbers in the cooling bed, which maximizes the heat recovery and does not interfere in the production process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.