Cancer progression is associated with an evolving tissue interface of direct epithelial-tumor microenvironment interactions. In biopsies of human breast tumors, extensive alterations in molecular pathways are correlated with cancer staging on both sides of the tumor-stroma interface. These interactions provide a pivotal paracrine signaling to induce malignant phenotype transition, the epithelial-mesenchymal transition (EMT). We explored how the direct contact between platelets-fibrin bundles primes metastasis using platelet-rich plasma (PRP) as a source of growth factors and mimics the provisional fibrin matrix between actively growing breast cancer cells and the tumor stroma. We have demonstrated PRP functions, modulating cell proliferation that is tumor-subtype and cancer cell-type-specific. Epithelial and stromal primary cells were prepared from breast cancer biopsies from 21 women with different cancer subtypes. Cells supplemented with PRP were immunoblotted with anti-phospho and total Src-Tyr-416, FAK-Try-925, E-cadherin, N-cadherin, TGF-β, Smad2, and Snail monoclonal antibodies. Breast tumor cells from luminal B and HER2 subtypes showed the most malignant profiles and the expression of thrombin and other classes of proteases at levels that were detectable through FRET peptide libraries. The angiogenesis process was investigated in the interface obtained between platelet-fibrin-breast tumor cells co-cultured with HUVEC cells. Luminal B and HER2 cells showed robust endothelial cell capillary-like tubes ex vivo. The studied interface contributes to the attachment of endothelial cells, provides a source of growth factors, and is a solid substrate. Thus, replacement of FBS supplementation with PRP supplementation represents an efficient and simple approach for mimicking the real multifactorial tumor microenvironment.
A glycosylated Bauhinia rufa elastase inhibitor (gBrEI) was purified and characterized using acetone precipitation, affinity chromatography on concanavalin A-Sepharose, ion-exchange chromatography on a HiTrap Q column, size exclusion chromatography on a Superdex 200 column and reverse-phase chromatography on a C18 column. gBrEI inhibited pancreatic porcine elastase with an equilibrium dissociation constant (K(i)) of 6.18 x 10(-8) M, but it did not inhibit human neutrophil elastase, bovine trypsin, human plasma kallikrein or porcine pancreatic kallikrein. On SDS-electrophoresis, gBrEI appeared as a single 20-kDa band, also after reduction. Schiff reagent staining indicated a carbohydrate portion in the protein, which was confirmed by mass spectrometry. The glycosylated site was Asn 38, and a carbohydrate portion of 1.17 kDa was identified. gBrEI was found to contain 144 amino acid residues, and a FASTA database analysis showed that it belongs to the plant Kunitz-type inhibitor family. Val66 was identified as reactive site P1 residue by comparison of conserved positions in the sequences. Since gBrEI harbors a single disulfide bridge, it may be considered a new type of Kunitz inhibitor, intermediate between the classical Kunitz inhibitors, which contain two disulfide bridges, and those from B. bauhinioides, which do not have such bridges.
The present paper describes the purification, characterization and determination of the partial primary structure of the first trypsin inhibitor isolated from the family Sapindaceae. A highly stable, potent trypsin inhibitor (SSTI) was purified to homogeneity. SDS-PAGE analysis revealed that the protein consists of a two-polypeptide chain with molecular masses of approximately 15 and 3 kDa. The purified inhibitor inhibited bovine trypsin at a 1:1 M ratio. Kinetic analysis revealed that the protein is a competitive inhibitor with an equilibrium dissociation constant of 10⁻⁹ M for trypsin. The partial NH₂- terminal sequence of 36 amino acids in SSTI indicates homology with other members of the trypsin-inhibitor family from different sources. This inhibitor is highly stable in the presence of denaturing agents. SSTI showed significant inhibitory activity against trypsin-like proteases present in the larval midgut on Anagasta kuehniella, Corcyra cephalonica, Diatreae saccharalis and Anticarsia gemmatalis.
Cell culture is considered the standard media used in research to emulate the in vivo cell environment. Crucial in vivo experiments cannot be conducted in humans and depend on in vitro methodologies such as cell culture systems. However, some procedures involving the quality control of cells in culture have been gradually neglected by failing to acknowledge that primary cells and cell lines change over time in culture. Thus, we report methods based on our experience for monitoring primary cell culture of human myometrial cells derived from uterine leiomyoma. We standardized the best procedure of tissue dissociation required for the study of multiple genetic marker systems that include species-specific antigens, expression of myofibroblast or myoblast markers, growth curve, serum deprivation, starvation by cell cycle synchronization, culture on collagen coated plates, and 17 β-estradiol (E2) and progesterone (P4) effects. The results showed that primary myometrial cells from patients with uterine leiomyoma displayed myoblast phenotypes before and after in vitro cultivation, and leiomyoma cells differentiated into mature myocyte cells under the appropriate differentiation-inducing conditions (serum deprivation). These cells grew well on collagen coated plates and responded to E2 and P4, which may drive myometrial and leiomyoma cells to proliferate and adhere into a focal adhesion complex involvement in a paracrine manner. The establishment of these techniques as routine procedures will improve the understanding of the myometrial physiology and pathogenesis of myometrium-derived diseases such as leiomyoma. Mimicking the in vivo environment of fibrotic conditions can prevent false results and enhance results that are based on cell culture integrity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.