In this study, we aimed to evaluate the relationship between individual total exposure to air pollution and airway changes in a group of 51 wheezing children.Respiratory status was assessed four times (January 2006, June 2006, January 2007 and June 2007) during a 1-week period through a standardised questionnaire, spirometry, exhaled nitric oxide fraction and pH in exhaled breath condensate (EBC). Concentrations of particles with a 50% cut-off aerodynamic diameter of 10 µm (PM10), O3, NO2and volatile organic compounds were estimated through direct measurements with anad hocdevice or air pollution modelling in the children's schools and at their homes in the same 4 weeks of the study. For each child, total exposure to the different air pollutants was estimated as a function of pollutant concentrations and daily activity patterns.Increasing total exposure to PM10, NO2, benzene, toluene and ethylbenzene was significantly associated with a decrease of forced expiratory volume in 1 s (FEV1) and with an increase of change in FEV1. Increasing exposure to NO2and benzene was also related to a significant decrease of FEV1/forced vital capacity. Increasing exposure to PM10, NO2, benzene and ethylbenzene was associated with acidity of EBC.This study suggests an association in wheezing children between airway changes and total exposure to air pollutants, as estimated by taking into account the concentration in the various microenvironments attended by the children.
Smoke from forest fires contains significant amounts of gaseous and particulate pollutants. Firefighters exposed to wildland fire smoke can suffer from several acute and chronic adverse health effects. Consequently, exposure data are of vital importance for the establishment of cause/effect relationships between exposure to smoke and firefighter health effects. The aims of this study were to (1) characterize the relationship between wildland smoke exposure and medical parameters and (2) identify health effects pertinent to wildland forest fire smoke exposure. In this study, firefighter exposure levels of carbon monoxide (CO), nitrogen dioxide (NO₂), and volatile organic compounds (VOC) were measured in wildfires during three fire seasons in Portugal. Personal monitoring devices were used to measure exposure. Firefighters were also tested for exhaled nitric oxide (eNO) and CO before and after their firefighting activities. Data indicated that exposure levels during firefighting activities were beyond limits recommended by the Occupational Exposure Standard (OES) values. Medical tests conducted on the firefighters also indicated a considerable effect on measured medical parameters, with a significant increase in CO and decrease in NO in exhaled air of majority of the firefighters.
a b s t r a c tWood is commonly used in residential combustion for heating purposes; however, it can be a major source of air pollutants, namely fine particles, volatile organic compounds and carbon monoxide. Since 2004, the PM10 daily limit value has been surpassed in Portugal, and the European Commission has stated that plans and programs must be designed in order to reduce these levels. In Portugal, 18% of PM10 emissions are due to residential wood combustion, which may deeply impact the PM10 levels in the atmosphere. The main aim of this study is to investigate the impact of residential wood combustion on the air quality in Portugal. The air quality modelling system MM5/CHIMERE was applied over Portugal for a winter month, for the following three scenarios: the reference scenario, considering the actual emissions of PM10; scenario 1, where residential wood combustion emissions are not considered; and scenario 2, which takes into account a complete conversion from traditional fireplaces to certified appliances (with a 90% reduction in PM emissions). The residential wood combustion contribution to PM10 air quality concentration values during January 2007 ranges from 0 to 14 mg m À3 , with a mean contribution of 10 mg m À3 in the Lisboa area and 6 mg m À3 in the Porto region. Concerning the legislated values, the area where the daily average limit value (50 mg m À3 ) is exceeded decreases by 46% in the simulation when residential combustion is not considered. The modelling results for scenario 2 are not significantly different from those for scenario 1. In summary, the regulation of the residential wood combustion sector is as an effective way to reduce the PM10 levels in the atmosphere as regards air quality plans and programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.