SummaryLeaf dark respiration (R dark ) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of R dark and associated leaf traits. Data for 899 species were compiled from 100 sites (from the Arctic to the tropics). Several woody and nonwoody plant functional types (PFTs) were represented. Mixed-effects models were used to disentangle sources of variation in R dark .Area-based R dark at the prevailing average daily growth temperature (T) of each site increased only twofold from the Arctic to the tropics, despite a 20°C increase in growing T (8-28°C). By contrast, R dark at a standard T (25°C, R dark 25 ) was threefold higher in the Arctic than in the tropics, and twofold higher at arid than at mesic sites. Species and PFTs at cold sites exhibited higher R dark 25 at a given photosynthetic capacity (V cmax 25 ) or leaf nitrogen concentration ([N]) than species at warmer sites. R dark 25 values at any given V cmax 25 or [N] were higher in herbs than in woody plants.The results highlight variation in R dark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of R dark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth system models (ESMs).
Summary• Gas exchange, fluorescence, western blot and chemical composition analyses were combined to assess if three functional groups (forbs, grasses and evergreen trees/ shrubs) differed in acclimation of leaf respiration ( R ) and photosynthesis ( A ) to a range of growth temperatures (7, 14, 21 and 28 ° C).• When measured at a common temperature, acclimation was greater for R than for A and differed between leaves experiencing a 10-d change in growth temperature (PE) and leaves newly developed at each temperature (ND). As a result, the R : A ratio was temperature dependent, increasing in cold-acclimated plants. The balance was largely restored in ND leaves. Acclimation responses were similar among functional groups.• Across the functional groups, cold acclimation was associated with increases in nonstructural carbohydrates and nitrogen. Cold acclimation of R was associated with an increase in abundance of alternative and/or cytochrome oxidases in a speciesdependent manner. Cold acclimation of A was consistent with an initial decrease and subsequent recovery of thylakoid membrane proteins and increased abundance of proteins involved in the Calvin cycle.• Overall, the results point to striking similarities in the extent and the biochemical underpinning of acclimation of R and A among contrasting functional groups differing in overall rates of metabolism, chemical composition and leaf structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.