A discussion of many of the recently implemented features of GAMESS (General Atomic and Molecular Electronic Structure System) and LibCChem (the C++ CPU/GPU library associated with GAMESS) is presented. These features include fragmentation methods such as the fragment molecular orbital, effective fragment potential and effective fragment molecular orbital methods, hybrid MPI/OpenMP approaches to Hartree–Fock, and resolution of the identity second order perturbation theory. Many new coupled cluster theory methods have been implemented in GAMESS, as have multiple levels of density functional/tight binding theory. The role of accelerators, especially graphical processing units, is discussed in the context of the new features of LibCChem, as it is the associated problem of power consumption as the power of computers increases dramatically. The process by which a complex program suite such as GAMESS is maintained and developed is considered. Future developments are briefly summarized.
A new, general spin-correct spin-flip configuration interaction (SF-CI) method is introduced by extending the occupation restricted multiple active spaces (ORMAS) CI method in GAMESS. SF-ORMAS is a single reference CI method that utilizes a high-spin restricted open shell determinant on which an arbitrary amount of spin-flipped excitations are carried out to generate a wave function of desired multiplicity. Furthermore, the SF-ORMAS method allows for a flexible design of the active space(s) to fit the chemical problem at hand. Therefore, a variety of spin-flip schemes can be implemented within this one formalism. As SF-ORMAS mostly accounts for static correlation, dynamic correlation is included through perturbation theory. The new method is demonstrated for single and multiple bond breaking, diradical systems, vertical excitations of linear alkenes, and the singlet-triplet energy gap of silicon trimer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.