The human Usher syndrome (USH) is the most frequent cause of combined deaf-blindness. USH is genetically heterogeneous with at least 12 chromosomal loci assigned to three clinical types, USH1-3. Although these USH types exhibit similar phenotypes in human, the corresponding gene products belong to very different protein classes and families. The scaffold protein harmonin (USH1C) was shown to integrate all identified USH1 and USH2 molecules into protein networks. Here, we analyzed a protein network organized in the absence of harmonin by the scaffold proteins SANS (USH1G) and whirlin (USH2D). Immunoelectron microscopic analyses disclosed the colocalization of all network components in the apical inner segment collar and the ciliary apparatus of mammalian photoreceptor cells. In this complex, whirlin and SANS directly interact. Furthermore, SANS provides a linkage to the microtubule transport machinery, whereas whirlin may anchor USH2A isoform b and VLGR1b (very large G-protein coupled receptor 1b) via binding to their cytodomains at specific membrane domains. The long ectodomains of both transmembrane proteins extend into the gap between the adjacent membranes of the connecting cilium and the apical inner segment. Analyses of Vlgr1/del7TM mice revealed the ectodomain of VLGR1b as a component of fibrous links present in this gap. Comparative analyses of mouse and Xenopus photoreceptors demonstrated that this USH protein network is also part of the periciliary ridge complex in Xenopus. Since this structural specialization in amphibian photoreceptor cells defines a specialized membrane domain for docking and fusion of transport vesicles, we suggest a prominent role of the USH proteins in cargo shipment.
cyto-Actin and ␥cyto-actin are ubiquitous proteins thought to be essential building blocks of the cytoskeleton in all non-muscle cells. Despite this widely held supposition, we show that ␥cyto-actin null mice (Actg1 ؊/؊ ) are viable. However, they suffer increased mortality and show progressive hearing loss during adulthood despite compensatory up-regulation of cyto-actin. The surprising viability and normal hearing of young Actg1 ؊/؊ mice means that cyto-actin can likely build all essential non-muscle actin-based cytoskeletal structures including mechanosensory stereocilia of hair cells that are necessary for hearing. Although ␥cyto-actin-deficient stereocilia form normally, we found that they cannot maintain the integrity of the stereocilia actin core. In the wild-type, ␥cyto-actin localizes along the length of stereocilia but re-distributes to sites of F-actin core disruptions resulting from animal exposure to damaging noise. In Actg1 ؊/؊ stereocilia similar disruptions are observed even without noise exposure. We conclude that ␥cyto-actin is required for reinforcement and long-term stability of F-actin-based structures but is not an essential building block of the developing cytoskeleton.actin ͉ cytoskeleton ͉ hearing T here are six genes encoding six vertebrate actins that are classified according to where they are predominately expressed. ␣ skeletal -Actin, ␣ smooth -actin, ␣ cardiac -actin, and ␥ smoothactin are primarily found in muscle cells, whereas cytoplasmic  cyto -actin and ␥ cyto -actin are ubiquitously and highly expressed in non-muscle cells, as reviewed elsewhere (1). Athough  cytoactin and ␥ cyto -actin differ at only four biochemically similar amino acid residues in their N-termini, several lines of evidence suggest that each protein is functionally distinct. The amino acid sequences of  cyto -and ␥ cyto -actin are each exactly conserved among avian and mammalian species. In addition,  cyto -and ␥ cyto -actin proteins are differentially localized (2-5) and posttranslationally modified (6). Finally, although dominant missense mutations in ACTB encoding  cyto -actin are associated with syndromic phenotypes including severe developmental malformations and bilateral deafness (7), humans carrying a variety of dominant missense mutations in ACTG1 develop postlingual nonsyndromic progressive hearing loss (DFNA20, OMIM 604717) (8-11).␥ cyto -Actin is widely expressed in the inner ear sensory epithelial cells on which mammalian hearing depends. These cells are organized in rows along the cochlea length: one row of inner hair cells (IHCs) and three rows of outer hair cells (OHCs) (Fig. 2A). IHCs function as auditory receptors, converting sound energy into neuronal signals, whereas OHCs enhance sensitivity to sound stimuli, as reviewed elsewhere (12). The apical surface of a hair cell is topped with actin-rich microvilli-derived protrusions termed stereocilia, which deflect in response to sound stimuli, initiating mechanoelectrical transduction (Fig. 2B).  cyto -and ␥ cyto -Actin are both thou...
MicroRNAs (miRNAs), a class of short non-coding RNAs that regulate the expression of mRNA targets, are important regulators of cellular senescence and aging. We questioned which miRNAs are involved in age-related degeneration of the organ of Corti (OC), the auditory sensory epithelium that transduces mechanical stimuli to electrical activity in the inner ear. Degeneration of the OC is generally accepted as the main cause of age-related hearing loss (ARHL), a progressive loss of hearing in individuals as they grow older. To determine which miRNAs are involved in the onset and progression of ARHL, miRNA gene expression in the OC of two mouse strains, C57BL/6J and CBA/J, was compared at three different ages using GeneChip miRNA microarray and was validated by real-time PCR. We showed that 111 and 71 miRNAs exhibited differential expression in the C57 and CBA mice, respectively, and that downregulated miRNAs substantially outnumbered upregulated miRNAs during aging. miRNAs that had approximately 2-fold upregulation included members of miR-29 family and miR-34 family, which are known regulators of pro-apoptotic pathways. In contrast, miRNAs that were downregulated by about 2-fold were members of the miR-181 family and miR-183 family, which are known to be important for proliferation and differentiation, respectively. The shift of miRNA expression favoring apoptosis occurred earlier than detectable hearing threshold elevation and hair cell loss. Our study suggests that changes in miRNA expression precede morphological and functional changes, and that upregulation of pro-apoptotic miRNAs and downregulation of miRNAs promoting proliferation and differentiation are both involved in age-related degeneration of the OC.
The olivocochlear bundle (OCB) was cut in neonatal cats to evaluate its role in the development of normal cochlear function. Approximately 1 year after deefferentation, acute auditory nerve fiber (ANF) recordings were made from lesioned animals, lesion shams, and normal controls. The degree of deefferentation was quantified via light microscopic evaluation of the density of OCB fascicles in the tunnel of Corti, and selected cases were analyzed via electron microscopy. In the most successful cases, the deefferentation was virtually complete. ANFs from successfully lesioned animals exhibited significant pathophysiology compared with normals and with other animals in which the surgery failed to interrupt the OCB. Thresholds at the characteristic frequency (CF), the frequency at which ANFs are most sensitive, were elevated across the CF range, with maximal effects for CFs in the 10 kHz region. Frequency threshold or tuning curves displayed reduction of tip-to-tail ratios (the difference between CF and low-frequency "tail" thresholds) and decreased sharpness of tuning. These pathological changes are generally associated with outer hair cell (OHC) damage. However, light microscopic histological analysis showed minimal hair cell loss and no significant differences between normal and deefferented groups. Spontaneous discharge rates (SRs) were lower than normal; however, those fibers with the highest SRs remained more sensitive than those with lower SRs. Findings suggest that the interaction between OC efferents and OHCs early in development may be critical for full expression of active mechanical processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.