Purpose: To evaluate the preclinical pharmacokinetics and antitumor efficacy of a novel orally bioavailable poly(ADP-ribose) polymerase (PARP) inhibitor, ABT-888. Experimental Design: In vitro potency was determined in a PARP-1 and PARP-2 enzyme assay. In vivo efficacy was evaluated in syngeneic and xenograft models in combination with temozolomide, platinums, cyclophosphamide, and ionizing radiation. Results: ABT-888 is a potent inhibitor of both PARP-1 and PARP-2 with K i s of 5.2 and 2.9 nmol/L, respectively.The compound has good oral bioavailability and crosses the blood-brain barrier. ABT-888 strongly potentiated temozolomide in the B16F10 s.c. murine melanoma model. PARP inhibition dramatically increased the efficacy of temozolomide at ABT-888 doses as low as 3.1 mg/kg/d and a maximal efficacy achieved at 25 mg/kg/d. In the 9L orthotopic rat glioma model, temozolomide alone exhibited minimal efficacy, whereas ABT-888, when combined with temozolomide, significantly slowed tumor progression. In the MX-1breast xenograft model (BRCA1 deletion and BRCA2 mutation), ABT-888 potentiated cisplatin, carboplatin, and cyclophosphamide, causing regression of established tumors, whereas with comparable doses of cytotoxic agents alone, only modest tumor inhibition was exhibited. Finally, ABT-888 potentiated radiation (2 Gy/d  10) in an HCT-116 colon carcinoma model. In each model, ABT-888 did not display single-agent activity. Conclusions: ABT-888 is a potent inhibitor of PARP, has good oral bioavailability, can cross the blood-brain barrier, and potentiates temozolomide, platinums, cyclophosphamide, and radiation in syngeneic and xenograft tumor models. This broad spectrum of chemopotentiation and radiopotentiation makes this compound an attractive candidate for clinical evaluation.poly(ADP-ribose) polymerase (PARP)-1 is the founding member of a family of poly(ADP-ribosyl)ating proteins. All PARP family members are characterized by the ability to poly(ADP-ribosyl)ate protein substrates and all share a catalytic PARP homology domain (1). PARP-1 and the closely related PARP-2 are nuclear proteins and the only PARPs with DNA binding domains. These DNA binding domains localize PARP-1 and PARP-2 to the site of DNA damage serving as DNA damage sensors and signaling molecules for repair. The knockout of PARP-1 is sufficient to significantly impair DNA repair following damage via radiation (2) or cytotoxic (3) insult. The residual PARP-dependent repair activity (f10%) is due to PARP-2 (4, 5). These data imply that inhibition of only PARP-1 and PARP-2 will impair DNA repair following damage and that inhibition of other PARP family members is not required in the process. The functions of other PARP family members remain to be elucidated, but poly(ADP-ribosyl)ation has been implicated in many cellular processes, including differentiation, gene regulation, protein degradation, spindle maintenance, as well as replication and transcription (6).Higher expression of PARP in cancer compared with normal cells has been linked to...
Progress in understanding tumor stromal biology has been constrained in part because cancer-associated fibroblasts (CAF) are a heterogeneous population with limited cell-type-specific protein markers. Using RNA expression profiling, we identified the membrane protein leucine-rich repeat containing 15 (LRRC15) as highly expressed in multiple solid tumor indications with limited normal tissue expression. LRRC15 was expressed on stromal fibroblasts in many solid tumors (e.g., breast, head and neck, lung, pancreatic) as well as directly on a subset of cancer cells of mesenchymal origin (e.g., sarcoma, melanoma, glioblastoma). LRRC15 expression was induced by TGFβ on activated fibroblasts (αSMA) and on mesenchymal stem cells. These collective findings suggested LRRC15 as a novel CAF and mesenchymal marker with utility as a therapeutic target for the treatment of cancers with LRRC15-positive stromal desmoplasia or cancers of mesenchymal origin. ABBV-085 is a monomethyl auristatin E (MMAE)-containing antibody-drug conjugate (ADC) directed against LRRC15, and it demonstrated robust preclinical efficacy against LRRC15 stromal-positive/cancer-negative, and LRRC15 cancer-positive models as a monotherapy, or in combination with standard-of-care therapies. ABBV-085's unique mechanism of action relied upon the cell-permeable properties of MMAE to preferentially kill cancer cells over LRRC15-positive CAF while also increasing immune infiltrate (e.g., F4/80 macrophages) in the tumor microenvironment. In summary, these findings validate LRRC15 as a novel therapeutic target in multiple solid tumor indications and support the ongoing clinical development of the LRRC15-targeted ADC ABBV-085. These findings identify LRRC15 as a new marker of cancer-associated fibroblasts and cancers of mesenchymal origin and provide preclinical evidence for the efficacy of an antibody-drug conjugate targeting the tumor stroma. .
Despite the importance of the oncogene in many malignancies, clinical strategies targeting c-Met have benefitted only small subsets of patients with tumors driven by signaling through the c-Met pathway, thereby necessitating selection of patients with amplification and/or c-Met activation most likely to respond. An ADC targeting c-Met could overcome these limitations with potential as a broad-acting therapeutic. ADC ABBV-399 was generated with the c-Met-targeting antibody, ABT-700. Antitumor activity was evaluated in cancer cells with overexpressed c-Met or amplified and in xenografts including patient-derived xenograft (PDX) models and those refractory to other c-Met inhibitors. The correlation between c-Met expression and sensitivity to ABBV-399 in tumor and normal cell lines was assessed to evaluate the risk of on-target toxicity. A threshold level of c-Met expressed by sensitive tumor but not normal cells is required for significant ABBV-399-mediated killing of tumor cells. Activity extends to c-Met or amplified cell line and PDX models where significant tumor growth inhibition and regressions are observed. ABBV-399 inhibits growth of xenograft tumors refractory to other c-Met inhibitors and provides significant therapeutic benefit in combination with standard-of-care chemotherapy. ABBV-399 represents a novel therapeutic strategy to deliver a potent cytotoxin to c-Met-overexpressing tumor cells enabling cell killing regardless of reliance on signaling. ABBV-399 has progressed to a phase I study where it has been well tolerated and has produced objective responses in c-Met-expressing non-small cell lung cancer (NSCLC) patients..
Theiler's virus infection in the central nervous system (CNS) induces a demyelinating disease very
Purpose: PARP inhibitors are being developed as therapeutic agents for cancer. More than six compounds have entered clinical trials. The majority of these compounds are b-nicotinamide adenine dinucleotide (NAD þ )-competitive inhibitors. One exception is iniparib, which has been proposed to be a noncompetitive PARP inhibitor. In this study, we compare the biologic activities of two different structural classes of NAD þ -competitive compounds with iniparib and its C-nitroso metabolite.Experimental Design: Two chemical series of NAD þ -competitive PARP inhibitors, iniparib and its C-nitroso metabolite, were analyzed in enzymatic and cellular assays. Viability assays were carried out in MDA-MB-436 (BRCA1-deficient) and DLD1À/À (BRCA2-deficient) cells together with BRCA-proficient MDA-MB-231 and DLD1 þ/þ cells. Capan-1 and B16F10 xenograft models were used to compare iniparib and veliparib in vivo. Mass spectrometry and the 3 H-labeling method were used to monitor the covalent modification of proteins.Results: All NAD þ -competitive inhibitors show robust activity in a PARP cellular assay, strongly potentiate the activity of temozolomide, and elicit robust cell killing in BRCA-deficient tumor cells in vitro and in vivo. Cell killing was associated with an induction of DNA damage. In contrast, neither iniparib nor its C-nitroso metabolite inhibited PARP enzymatic or cellular activity, potentiated temozolomide, or showed activity in a BRCA-deficient setting. We find that the nitroso metabolite of iniparib forms adducts with many cysteine-containing proteins. Furthermore, both iniparib and its nitroso metabolite form protein adducts nonspecifically in tumor cells. Conclusions: Iniparib nonselectively modifies cysteine-containing proteins in tumor cells, and the primary mechanism of action for iniparib is likely not via inhibition of PARP activity. Clin Cancer Res; 18(2); 510-23. Ó2011 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.