Plants have the ability to synthesize almost unlimited number of substances. In many cases, these chemicals serve in plant defense mechanisms against microorganisms, insects, and herbivores. Generally, any part of the plant may contain the various active ingredients. Among the plant, active compounds are saponins, which are traditionally used as natural detergents. The name 'saponin' comes from the Latin word 'sapo,' which means 'soap' as saponins show the unique properties of foaming and emulsifying agents. Steroidal and triterpenoid saponins can be used in many industrial applications, from the preparation of steroid hormones in the pharmaceutical industry to utilization as food additives that exploit their non-ionic surfactant properties. Saponins also exhibit different biological activities. This chapter has been prepared by participants of the Marie Sklodowska-Curie Action-Research and Innovation Staff Exchange (RISE) in the framework of the proposal 'ECOSAPONIN.' Interactions between the participants, including chemists, physicists, technologists, microbiologists and botanists from four countries, will contribute to the development of collaborative ties and further promote research and development in the area of saponins in Europe and China. Although this chapter cannot provide a comprehensive account of the state of knowledge regarding plant saponins, we hope that it will help make saponins the focus of ongoing international cooperation.
Sugar beet pulp, a byproduct of sugar beet processing, can be used as a feedstock in second-generation ethanol production. The objective of this study was to investigate the effects of pretreatment, of the dosage of cellulase and hemicellulase enzyme preparations used, and of aeration on the release of fermentable sugars and ethanol yield during simultaneous saccharification and fermentation (SSF) of sugar beet pulp-based worts. Pressure-thermal pretreatment was applied to sugar beet pulp suspended in 2% w/w sulphuric acid solution at a ratio providing 12% dry matter. Enzymatic hydrolysis was conducted using Viscozyme and Ultraflo Max (Novozymes) enzyme preparations (0.015–0.02 mL/g dry matter). Two yeast strains were used for fermentation: Ethanol Red (S. cerevisiae) (1 g/L) and Pichia stipitis (0.5 g/L), applied sequentially. The results show that efficient simultaneous saccharification and fermentation of sugar beet pulp was achieved. A 6 h interval for enzymatic activation between the application of enzyme preparations and inoculation with Ethanol Red further improved the fermentation performance, with the highest ethanol concentration reaching 26.9 ± 1.2 g/L and 86.5 ± 2.1% fermentation efficiency relative to the theoretical yield.
Butanol has similar characteristics to gasoline, and could provide an alternative oxygenate to ethanol in blended fuels. Butanol can be produced either via the biotechnological route, using microorganisms such as clostridia, or by the chemical route, using petroleum. Recently, interest has grown in the possibility of catalytic coupling of bioethanol into butanol over various heterogenic systems. This reaction has great potential, and could be a step towards overcoming the disadvantages of bioethanol as a sustainable transportation fuel. This paper summarizes the latest research on butanol synthesis for the production of biofuels in different biotechnological and chemical ways; it also compares potentialities and limitations of these strategies.
This paper presents an overview of alternative uses for products of sugar beet processing, especially sucrose, as chemical raw materials for the production of biodegradable polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.