To evaluate the impact on Electroencephalography (EEG) classification of different kinds of attention mechanisms in Deep Learning (DL) models. Methods: We compared three attention-enhanced DL models, the brand-new InstaGATs, an LSTM with attention and a CNN with attention. We used these models to classify normal and abnormal (i.e., artifactual or pathological) EEG patterns. Results: We achieved the state of the art in all classification problems, regardless the large variability of the datasets and the simple architecture of the attentionenhanced models. We could also proved that, depending on how the attention mechanism is applied and where the attention layer is located in the model, we can alternatively leverage the information contained in the time, frequency or space domain of the dataset. Conclusions: with this work, we shed light over the role of different attention mechanisms in the classification of normal and abnormal EEG patterns. Moreover, we discussed how they can exploit the intrinsic relationships in the temporal, frequency and spatial domains of our brain activity. Significance: Attention represents a promising strategy to evaluate the quality of the EEG information, and its relevance, in different real-world scenarios. Moreover, it can make it easier to parallelize the computation and, thus, to speed up the analysis of big electrophysiological (e.g., EEG) datasets.
Deep Learning (DL) has recently shown promising classification performance in Electroencephalography (EEG) in many different scenarios. However, the complex reasoning of such models often prevent the user to explain their classification abilities. Attention, one of the most recent and influential ideas in DL, allows the models to learn which portions of the data are relevant to the final classification output. In this work, we compared three attention-enhanced DL models, the brand-new InstaGATs , an LSTM with attention and a CNN with attention. We used these models to classify normal and abnormal, including artifactual and pathological, EEG patterns in three different datasets. We achieved the state of the art in all classification problems, regardless the large variability of the datasets and the simple architecture of the attention-enhanced models. Additionally, we proved that, depending on how the attention mechanism is applied and where the attention layer is located in the model, we can alternatively leverage the information contained in the time, frequency or space domain of the EEG dataset. Therefore, attention represents a promising strategy to evaluate the quality of the EEG information, and its relevance for classification, in different real-world scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.