Cryopreservation of larvae of Greenshell TM mussel Perna canaliculus, the most cultivated species in New Zealand, can provide flexibility for selective breeding programmes and enhance its global production. In this study, we set out to develop a reliable protocol for freezing D-stage larvae of Greenshell™ mussels that ensured long-term survival for successful rearing of thawed larvae in the hatchery. The effects of different combinations of cryoprotecting agents (CPA), varying CPA equilibration times, larval concentrations per straw as well as different larval development stages (48 h vs 72 h old) were evaluated by assessing the behavioural response (swimming activity, algal consumption), shell size and survival of larvae, up to 4 days post-thawing. The protocol yielding the best larval performances was a combination of the following CPA (final concentrations): 14% ethyleneglycol (EG) + 0.6M trehalose (TRE) + 1% polyvinyl-pyrrolidone (PVP), prepared with Milli-Q water. Stocking densities ranging from 50,000 to 150,000 larvae per straw (0.25 mL) and a 20 min equilibration time gave the best results, while no significant differences in fitness were found between larvae cryopreserved at 48h nor 72h-old. Using the improved cryopreservation protocol, over 50% of previously cryopreserved D-larvae were able to survive after 4 days of rearing, compared with 65% in the unfrozen control. More importantly, about one third of thawed larvae were able to swim and feed, and to potentially develop further. These findings contribute to enhance the selective breeding programmes for this species.
Cryopreservation of larvae of Greenshell TM mussel Perna canaliculus, the most cultivated species in New Zealand, can provide flexibility for selective breeding programmes and enhance its global production. In this study, we set out to develop a reliable protocol for freezing D-stage larvae of Greenshell™ mussels that ensured long-term survival for successful rearing of thawed larvae in the hatchery. The effects of different combinations of cryoprotecting agents (CPA), varying CPA equilibration times, larval concentrations per straw as well as different larval development stages (48 h vs 72 h old) were evaluated by assessing the behavioural response (swimming activity, algal consumption), shell size and survival of larvae, up to 4 days post-thawing. The protocol yielding the best larval performances was a combination of the following CPA (final concentrations): 14% ethyleneglycol (EG) + 0.6M trehalose (TRE) + 1% polyvinyl-pyrrolidone (PVP), prepared with Milli-Q water. Stocking densities ranging from 50,000 to 150,000 larvae per straw (0.25 mL) and a 20 min equilibration time gave the best results, while no significant differences in fitness were found between larvae cryopreserved at 48h nor 72h-old. Using the improved cryopreservation protocol, over 50% of previously cryopreserved D-larvae were able to survive after 4 days of rearing, compared with 65% in the unfrozen control. More importantly, about one third of thawed larvae were able to swim and feed, and to potentially develop further. These findings contribute to enhance the selective breeding programmes for this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.