Background Although cure rates for Wilms tumours (WT) are high, many patients receive therapy with attendant long-term complications. Our goal was to stratify WT using genome-wide analyses to identify candidate molecular features for patients who would benefit from a reduction in therapy. Methods We generated DNA methylation and exome sequencing data on WT–kidney pairs (n = 57) and unpaired tumours (n = 27) collected either at our centre or by the Children’s Oncology Group. Samples were divided into a discovery set (n = 32) and validation set (n = 52). Results Analysis of DNA methylation revealed two subgroups of WT with distinct features. Subgroup A has a similar DNA methylation profile to mature kidney, while Subgroup B has genome-wide dysregulation of DNA methylation. The rate of non-synonymous missense mutations and segmental chromosomal aberrations was higher in Subgroup B tumours, suggesting that this group has genome instability related to its epigenetic state. Subgroup A had a higher proportion of cases of bilateral disease. Tumours with high-risk histology or from patients who relapsed were only found in Subgroup B. Conclusion We have identified subgroup-specific molecular events that could inform future work supporting more targeted therapeutic approaches and patient stratification. We propose a novel developmental tumour model based on these findings.
Background: Ischemia induced acute kidney injury (AKI) resulting in tubular damage can often progress to chronic kidney disease (CKD) and is a common cause of nephrology consultation. Following renal tubular epithelial damage, molecular and cellular mechanisms are activated to repair and regenerate the damaged epithelium. If these mechanisms are impaired, AKI can progress to CKD. Even in patients whose kidney function returns to normal baseline are more likely to develop CKD. Genome-wide association studies have provided robust evidence that genetic variants in SHROOM3, which encodes an actin-associated protein, are associated with CKD and poor outcomes in transplanted kidneys. Here, we sought to further understand the associations of Shroom3 in CKD. Methods: Kidney ischemia was induced in wild-type and Shroom3 heterozygous null mice (Shroom3Gt/+) and the mechanisms of cellular recovery and repair were examined. Results: A 28-minute bilateral ischemia in Shroom3Gt/+ mice resulted in 100% mortality within 24 hours. After 22-minute ischemic injury, Shroom3Gt/+ mice had a 16% increased mortality, worsened kidney function, and significantly worse histopathology, apoptosis, proliferation, inflammation, and fibrosis after injury. The cortical tubular damage in Shroom3Gt/+ was associated with disrupted epithelial redifferentiation, disrupted Rho-kinase/myosin signaling, and disorganized apical F-actin. Analysis of Madin Darby Canine Kidney Cells showed the levels of Shroom3 are directly correlated to apical organization of actin and actomyosin regulators. Conclusion: These findings establish that Shroom3 is required for epithelial repair and redifferentiation through the organization of actomyosin regulators and could explain why genetic variants in Shroom3 are associated with CKD and allograft rejection.
Renal dysplasia, the major cause of childhood renal failure, is characterized by defective branching morphogenesis and nephrogenesis. Beta-catenin, a transcription factor and cell adhesion molecule, is markedly increased in the nucleus of kidney cells in human renal dysplasia and contributes to its pathogenesis by altering target genes that are essential for kidney development. Quercetin, a naturally occurring flavonoid, reduces nuclear beta-catenin levels and reduces beta-catenin transcriptional activity. In this study, we utilized wild type and dysplastic mouse kidney organ explants to determine if quercetin reduces beta-catenin activity during kidney development and whether it improves the severity of renal dysplasia. In wild type kidney explants, quercetin treatment resulted in abnormal branching morphogenesis and nephrogenesis in a dose dependent manner. In wild type embryonic kidneys, quercetin reduced nuclear beta-catenin expression and decreased expression of beta-catenin target genes Pax2, Six2, and Gdnf, which are essential for kidney development. Our RD B mouse model of renal dysplasia recapitulates the overexpression of beta-catenin and histopathological changes observed in human renal dysplasia. RD B kidneys treated with quercetin resulted in improvements in the overall histopathology, tissue organization, ureteric branching morphogenesis, and nephrogenesis. Quercetin treatment also resulted in reduced nuclear beta-catenin and reduced Pax2 expression. These improvements were associated with the proper organization of vimentin, NCAM, and E-cadherin, and a 45% increase in the number of developing and maturing nephrons. Further, our results show that in human renal dysplasia, beta-catenin, vimentin, and e-cadherin also have abnormal expression patterns. Taken together, these data demonstrate that quercetin treatment reduces nuclear beta-catenin and this is associated with improved epithelial organization of developing nephrons, resulting in increased developing nephrons and a partial rescue of renal dysplasia.
BackgroundKidney development is regulated by cellular interactions between the ureteric epithelium, mesenchyme, and stroma. Previous studies demonstrate essential roles for stromal β‐catenin in kidney development. However, how stromal β‐catenin regulates kidney development is not known. We hypothesize that stromal β‐catenin modulates pathways and genes that facilitate communications with neighboring cell populations to regulate kidney development.ResultsWe isolated purified stromal cells with wild type, deficient, and overexpressed β‐catenin by fluorescence‐activated cell sorting and conducted RNA Sequencing. A Gene Ontology network analysis demonstrated that stromal β‐catenin modulates key kidney developmental processes, including branching morphogenesis, nephrogenesis and vascular formation. Specific stromal β‐catenin candidate target genes that may mediate these effects included secreted, cell‐surface and transcriptional factors that regulate branching morphogenesis and nephrogenesis (Wnts, Bmp, Fgfr, Tcf/Lef) and secreted vascular guidance cues (Angpt1, VEGF, Sema3a). We validated established β‐catenin targets including Lef1 and novel candidate β‐catenin targets including Sema3e which have unknown roles in kidney development.ConclusionsThese studies advance our understanding of gene and biological pathway dysregulation in the context of stromal β‐catenin misexpression during kidney development. Our findings suggest that during normal kidney development, stromal β‐catenin may regulate secreted and cell‐surface proteins to communicate with adjacent cell populations.
Purpose of conference: New discoveries arising from investigations into fundamental aspects of kidney development and function in health and disease are critical to advancing kidney care. Scientific meetings focused specifically on fundamental biology of the kidney can facilitate interactions, support the development of collaborative groups, and accelerate translation of key findings. The Canadian fundamental kidney researcher community has lacked such a forum. On December 3 to 4, 2021, the first Molecules and Mechanisms Mediating Kidney Health and Disease (M3K) Scientific Meeting and Investigator Summit was held to address this gap with the goal of advancing fundamental kidney research nationally. The meeting was held virtually and was supported by a planning and dissemination grant from the Canadian Institutes of Health Research. Attendees included PhD scientists, nephrology clinician scientists, engineers, industry representatives, graduate students, medical residents, and fellows. Sources of information: This report was prepared from the scientific program, registration numbers, and details obtained from the online platform WHOVA, and summaries written by organizers and participants of the 2021 meeting. Methods: A 21-person team, consisting of the organizing committee members and participants from the meeting, was assembled. Key highlights of the meeting and future directions were identified and the team jointly assembled this report. Key findings: Participation in the meeting was strong, with more than 140 attendees across a range of disciplines. The program featured state-of-the-art presentations on diabetic nephropathy, the immune system, kidney development, and fibrosis, and was heavily focused on trainee presentations. The moderated “Investigator Summit” identified key barriers to research advancement and discussed strategies for overcoming them. These included establishment of a pan-Canadian fundamental kidney research network, development of key resources, cross-pollination with clinical nephrology, better reintegration into the Canadian Society of Nephrology, and further establishment of identity and knowledge translation. Limitations and implications: The 2021 M3K meeting represented a key first step in uniting fundamental kidney researchers in Canada. However, it was universally agreed that regular meetings were necessary to sustain this momentum. The proceedings of this meeting and future actions to sustain the M3K Scientific Meeting and Investigator Summit are presented in this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.