Numerous properties from metal nanostructures can be tuned by controlling both their size and shape. In particular, the latter is extremely important because the type of crystalline surface affects the surface electronic density. This paper describes a simple approach to the synthesis of highly-structured, anisotropic palladium nanostructured dendrites. They were obtained using an eco-friendly biomolecule 5-hydroxytryptophan, which acts as both a reducing and stabilizing agent. The growth mechanism is proposed for the evolution of dendrites morphology. It was found that the concentration of 5-hydroxytryptophan played a vital role on the morphology of the nanostructured Pd dendrites. This nanomaterial shows enhanced electrocatalytic performance towards the oxidation of formic acid, and it exhibits surface-enhanced Raman scattering properties towards the prostate specific antigen. These properties may be explored in fuel cells and biosensors, respectively.
Electrodes modified with oppositely charged platinum and gold nanoparticles exhibit electrocatalytic synergy of glucose oxidation. Such a simple method of preparation of bimetallic nanoparticulate films produces an electrode with significant shift of the onset potential as compared to electrodes prepared only from platinum (ca. 0.45 V) or gold (ca. 0.6 V) nanoparticles. The observed effect results from close proximity of the Au and Pt nanoparticles surfaces within the film. The electrode was also characterized by scanning electron microscopy, X‐ray photoelectron spectroscopy, powder X‐ray diffraction measurements and cyclic voltammetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.