(1) to examine changes in the whole-brain functional network under increased cognitive demands of working memory during an n-back task, and their relationship with behavioral outcomes; and (2) to provide a comprehensive description of local changes that may be involved in the formation of the global workspace, using hub detection and network-based statistic. Our results show that network modularity decreased with increasing cognitive demands, and this change allowed us to predict behavioral performance. The number of connector hubs increased, whereas the number of provincial hubs decreased when the task became more demanding. We also found that the default mode network (DMN) increased its connectivity to other networks while decreasing connectivity between its own regions. These results, apart from replicating previous findings, provide a valuable insight into the mechanisms of the formation of the global workspace, highlighting the role of the DMN in the processes of network integration. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc.
Chronic stress is the main cause of health problems in high-risk jobs. Wearable sensors can become an ecologically valid method of stress level assessment in real-life applications. We sought to determine a non-invasive technique for objective stress monitoring. Data were collected from firefighters during 24-h shifts using sensor belts equipped with a dry-lead electrocardiograph (ECG) and a three-axial accelerometer. Levels of stress experienced during fire incidents were evaluated via a brief self-assessment questionnaire. Types of physical activity were distinguished basing on accelerometer readings, and heart rate variability (HRV) time series were segmented accordingly into corresponding fragments. Those segments were classified as stress/no-stress conditions. Receiver Operating Characteristic (ROC) analysis showed true positive classification as stress condition for 15% of incidents (while maintaining almost zero False Positive Rate), which parallels the amount of truly stressful incidents reported in the questionnaires. These results show a firm correspondence between the perceived stress level and physiological data. Psychophysiological measurements are reliable indicators of stress even in ecological settings and appear promising for chronic stress monitoring in high-risk jobs, such as firefighting.
Neural complexity is thought to be associated with efficient information processing but the exact nature of this relation remains unclear. Here, the relationship of fluid intelligence (gf) with the resting‐state EEG (rsEEG) complexity over different timescales and different electrodes was investigated. A 6‐min rsEEG blocks of eyes open were analyzed. The results of 119 subjects (57 men, mean age = 22.85 ± 2.84 years) were examined using multivariate multiscale sample entropy (mMSE) that quantifies changes in information richness of rsEEG in multiple data channels at fine and coarse timescales. gf factor was extracted from six intelligence tests. Partial least square regression analysis revealed that mainly predictors of the rsEEG complexity at coarse timescales in the frontoparietal network (FPN) and the temporo‐parietal complexities at fine timescales were relevant to higher gf. Sex differently affected the relationship between fluid intelligence and EEG complexity at rest. In men, gf was mainly positively related to the complexity at coarse timescales in the FPN. Furthermore, at fine and coarse timescales positive relations in the parietal region were revealed. In women, positive relations with gf were mostly observed for the overall and the coarse complexity in the FPN, whereas negative associations with gf were found for the complexity at fine timescales in the parietal and centro‐temporal region. These outcomes indicate that two separate time pathways (corresponding to fine and coarse timescales) used to characterize rsEEG complexity (expressed by mMSE features) are beneficial for effective information processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.