Oxidative stress plays an important role in the pathogenesis of many serious diseases, including cancer, atherosclerosis, coronary artery disease, Parkinson’s disease, Alzheimer’s disease, stroke and myocardial infarction. In the body’s natural biochemical processes, harmful free radicals are formed, which can be removed with the help of appropriate enzymes, a balanced diet or the supply of synthetic antioxidant substances such as flavonoids, vitamins or anthocyanins to the body. Due to the growing demand for antioxidant substances, new complex compounds of transition metal ions with potential antioxidant activity are constantly being sought. In this study, four oxovanadium(IV) and dioxovanadium(V) dipicolinate (dipic) complexes with 1,10-phenanthroline (phen), 2,2′-bipyridyl (bipy) and the protonated form of 2-phenylpyridine (2-phephyH): (1) [VO(dipic)(H2O)2] · 2 H2O, (2) [VO(dipic)(phen)] · 3 H2O, (3) [VO(dipic)(bipy)] · H2O and (4) [VOO(dipic)](2-phepyH) · H2O were synthesized including one new complex, so far unknown and not described in the literature, i.e., [VOO(dipic)](2-phepyH) · H2O. The oxovanadium(IV) dipicolinate complexes with 1,10-phenanthroline and 2,2′-bipyridyl have been characterized by several physicochemical methods: NMR, MALDI-TOF-MS, IR, but new complex [VOO(dipic)](2-phepyH) · H2O has been examined by XRD to confirm its structure. The antioxidant activities of four complexes have been examined by the nitrotetrazolium blue (NBT) method towards superoxide anion. All complexes exhibit high reactivity with superoxide anion and [VOO(dipic)](2-phepyH) · H2O has higher antioxidant activity than L-ascorbic acid. Our studies confirmed that high basicity of the auxiliary ligand increases the reactivity of the complex with the superoxide radical.
This publication presents the new trends and opportunities for further development of coordination compounds used in the chemical industry. The review describes the influence of various physicochemical factors regarding the coordination relationship (for example, steric hindrance, electron density, complex geometry, ligand), which condition technological processes. Coordination compounds are catalysts in technological processes used during organic synthesis, for example: Oxidation reactions, hydroformylation process, hydrogenation reaction, hydrocyanation process. In this article, we pointed out the possibilities of using complex compounds in catalysis, and we noticed what further research should be undertaken for this purpose.
The new type of catalysts designed for the olefin derivatives polymerization has been synthetized. The novel catalysts are chromium(III) salt type complexes composed of both organic cation and anion, i.e. [Cr(dipic)2][Cr(bipy)(dipic)H2O]∙2H2O and [Cr(dipic)2]Hdmbipy∙2.5 H2O. The compositions of these complexes have been confirmed by a number of instrumental methods including NMR, IR, UV-Vis, MS and elemental analysis ones. Moreover, the crystal structures of these novel catalysts were determined and reported. Furthermore, the [Cr(dipic)2][Cr(bipy)(dipic)H2O]∙2H2O and [Cr(dipic)2]Hdmbipy∙2.5H2O complexes have been studied towards their catalytic activity, after the activation by MMAO (modified methylaluminoxane), in the case of 2-chloro-2-propen-1-ol polymerization at 21 °C and atmospheric pressure. It has been found that novel catalysts, [Cr(dipic)2][Cr(bipy)(dipic)H2O]∙2H2O and [Cr(dipic)2]Hdmbipy∙2.5 H2O, exhibit a very high catalytic activity in the process of the polymerization of the beta-olefin derivatives. The products of a such catalyzed polymerization are the poly(allyl alcohol) derivatives.
Photodynamic therapy (PDT) has become an alternative to standard cancer treatment methods such as surgery, chemotherapy and radiotherapy. The uniqueness of this method relies on the possibility of using various photosensitizers (PS) that absorb and convert light emission in radical oxygen-derived species (ROS). They can be present alone or in the presence of other compounds such as metal organic frameworks (MOFs), non-tubules or polymers. The interaction between DNA and metal-based complexes plays a key role in the development of new anti-cancer drugs. The use of coordination compounds in PDT has a significant impact on the amount ROS generated, quantum emission efficiency (Φem) and phototoxic index (PI). In this review, we will attempt to systematically review the recent literature and analyze the coordination complexes used as PS in PDT. Finally, we compared the anticancer activities of individual coordination complexes and discuss future perspectives. So far, only a few articles link so many transition metal ion coordination complexes of varying degrees of oxidation, which is why this review is needed by the scientific community to further expand this field worldwide. Additionally, it serves as a convenient collection of important, up-to-date information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.