Amyloid-β (Aβ) plaques and α-synuclein (α-syn)-rich Lewy bodies are the major neuropathological hallmarks of Alzheimer's disease (AD) and Parkinson's disease, respectively. An overlap of pathologies is found in most individuals with dementia with Lewy bodies (DLB) and in more than 50% of AD cases. Their brains display substantial α-syn accumulation not only in Lewy bodies, but also in dystrophic neurites decorating Aβ plaques. Several studies report binding and coaggregation of Aβ and α-syn, yet the precise role of α-syn in amyloid plaque formation remains elusive. Here we performed intracerebral injections of α-syn-containing preparations into amyloid precursor protein (APP) transgenic mice (expressing APP695(KM670/671NL) and PSEN1(L166P) under the control of the neuron-specific Thy-1 promoter; referred to here as 'APPPS1'). Unexpectedly, α-syn failed to cross-seed Aβ plaques in vivo, but rather it inhibited plaque formation in APPPS1 mice coexpressing SNCA(A30P) (referred to here as 'APPPS1 × [A30P]aSYN' double-transgenic mice). This was accompanied by increased Aβ levels in cerebrospinal fluid despite unchanged overall Aβ levels. Notably, the seeding activity of Aβ-containing brain homogenates was considerably reduced by α-syn, and Aβ deposition was suppressed in grafted tissue from [A30P]aSYN transgenic mice. Thus, we conclude that an interaction between Aβ and α-syn leads to inhibition of Aβ deposition and to reduced plaque formation.
Amyloid-β (Aβ) plaque deposition plays a central role in the pathogenesis of Alzheimer’s disease (AD). Post-mortem analysis of plaque development in mouse models of AD revealed that plaques are initially small, but then increase in size and become more numerous with age. There is evidence that plaques can grow uniformly over time; however, a complementary hypothesis of plaque development is that small plaques cluster and grow together thereby forming larger plaques. To investigate the latter hypothesis, we studied plaque formation in APPPS1 mice using in vivo two-photon microscopy and immunohistochemical analysis. We used sequential pre- and post-mortem staining techniques to label plaques at different stages of development and to detect newly emerged plaques. Post-mortem analysis revealed that a subset (22 %) of newly formed plaques appeared very close (<40 μm) to pre-existing plaques and that many close plaques (25 %) that were initially separate merged over time to form one single large plaque. Our results suggest that small plaques can cluster together, thus forming larger plaques as a complementary mechanism to simple uniform plaque growth from a single initial plaque. This study deepens our understanding of Aβ deposition and demonstrates that there are multiple mechanisms at play in plaque development.Electronic supplementary materialThe online version of this article (doi:10.1007/s00401-013-1137-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.