Background: In developing countries, brand-generic substitution is not based on validated scientific evidence that confirm the therapeutic equivalence of the generic to the originator. Rather, decisions are made based on the availability of generic medications. Substitution by inappropriate preparations applies to antibiotics, which may increase the risk of resistance in case of underdosing. This analytical study aims to dose and assess for the accuracy of labeling three oral antibiotic preparations, namely ciprofloxacin hydrochloride, amoxicillin trihydrate and amoxicillin trihydrate-clavulanate potassium, the active pharmaceutical ingredients (APIs) found in brand and generic tablets available on the Lebanese market. Methods: One brand and 4 generics of ciprofloxacin tablets, 3 generic amoxicillin tablets, and 1 brand and 4 generics of amoxicillin-clavulanic acid medications, were quantified, taking 2 batches of each. According to the United States Pharmacopeia (USP) guidelines, ultra-high pressure liquid chromatography was used to measure the APIs content within tablets. The USP required assay limit of the API was taken as the main comparison criteria. Results: Out of the 5 ciprofloxacin medications tested, all 5 were out of the 2% required range, thus being substandard. For amoxicillin, all 3 medications were within the 20% range. As for amoxicillin-clavulanic acid medications, 4 out of 5 medications met the 30% required range of clavulanic acid and one exceeded the claimed amount of clavulanic acid, while all 5 met the assay limit for amoxicillin. Conclusion: These findings raise safety and efficacy concerns, providing solid grounds for potential correlations of antibiotic resistance/substandard antibiotics.
Health and welfare of population are priority reasons to study the toxic effects of chemical pollutants. These effects can directly produce deterioration of health or can cause less healthful environment toxicity and restricting food production. Thereby, preventing such a consequence is important for human health risk assessment. In recent times, the use of recycled materials for packaging has undeniably been intensified. Nevertheless, recycling systems could not effectively eliminate the potential effect of chemical pollutants (alkyl phenol, phthalates, aldehydes, etc.) existent in such packages. The migration process and/or the ability of these pollutants to be absorbed into the recycled material, subsequently released by the packaging material, and then trapped by the matrices they contain, has become a potential source of exposure to consumers. This process is controlled by the nature of the packaging, time, temperature, and the physicochemical properties of the contaminant. The literature suffers from a lack of data related to the physicochemical (aqueous solubility, vapor pressure, Henry’s constant, etc...) of these contaminants. In this work, we are going to describe the experimental devices used for aqueous solubility, vapor pressure and octanol/water partition coefficient determination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.