Energy and biomass production in cancer cells are largely supported by aerobic glycolysis in what is called the Warburg effect. The process is regulated by key enzymes, among which phosphofructokinase PFK‐2 plays a significant role by producing fructose‐2,6‐biphosphate; the most potent activator of the glycolysis rate‐limiting step performed by phosphofructokinase PFK‐1. Herein, the synthesis, biological evaluation and structure–activity relationship of novel inhibitors of 6‐phosphofructo‐2‐kinase/fructose‐2,6‐biphosphatase 3 (PFKFB3), which is the ubiquitous and hypoxia‐induced isoform of PFK‐2, are reported. X‐ray crystallography and docking were instrumental in the design and optimisation of a series of N‐aryl 6‐aminoquinoxalines. The most potent representative, N‐(4‐methanesulfonylpyridin‐3‐yl)‐8‐(3‐methyl‐1‐benzothiophen‐5‐yl)quinoxalin‐6‐amine, displayed an IC50 of 14 nm for the target and an IC50 of 0.49 μm for fructose‐2,6‐biphosphate production in human colon carcinoma HCT116 cells. This work provides a new entry in the field of PFKFB3 inhibitors with potential for development in oncology.
A series of novel derivatives of 2'-C-beta-methylcytidine, involving nucleosides modified in the "upper part" of the pyrimidine base (N(4)- and/or 5-position), has been synthesized and evaluated for their inhibitory effect on in vitro replication of the hepatitis C virus and the yellow fever virus (both Flaviviridae).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.