Aims Marine soft sediments cover much of the deep ocean and are one of the largest habitats in the world, yet much of our understanding about their diversity is based on sampling in the North Atlantic. The deep-sea benthos provides a simplified environment in which to explore the processes which maintain species richness. Here we investigate the influence of energy and habitat complexity on benthic species richness along an oligotrophic continental margin within the Indian Ocean.
LocationThe upper continental margin of western Australia (c. 13-35°S, 100-1000 m depth).
MethodsWe examined the species richness of selected polychaetes (Annelida) and crustaceans in sediment grab samples. We used generalized linear models and hierarchical partitioning to examine the relationship and relative importance of temperature, productivity (particulate organic carbon flux, net primary productivity and depth) and habitat complexity (sediment particle size diversity and grain size) on species richness at 51 sites.
ResultsIn contrast to benthic studies in the North Atlantic, we found that species richness was higher on the shelf than on the slope. Species richness was positively correlated with net primary productivity; this relationship was influenced by high species richness in two areas where oceanic mixing is known to enhance primary productivity. Habitat heterogeneity and temperature were less influential.
Main conclusionThis study represents one of the first extensive quantitative studies of deep-water benthos in the Indo-West Pacific, and provides further evidence that bathymetric gradients of species richness are variable between regions, probably due to variation in local oceanography and productivity regimes. Our findings provide support for the overriding influence of productivity on species richness, even over relatively small ranges in depth and productivity. As climate change is expected to modify biogeochemical fluxes to the deep seafloor, this is likely to affect the communities of deep-sea fauna.
Jellyfish form associations with a diverse fauna including parasites and commensals, yet, ecological data on these associations, particularly time series, are rare. The present study examined temporal variation in the intensities and prevalences of two symbionts, namely, a sphaeromatid isopod (Cymodoce gaimardii) and a parasitic anemone (Anemonactis clavus) of the scyphozoan jellyfish Catostylus mosaicus over a 2-year period. Jellyfish were captured from Port Phillip Bay, Victoria, Australia, approximately every 6 weeks and inspected for symbionts. The isopod occurred on C. mosaicus on 16 of the 19 sampling occasions; prevalences ranged from 5 to 85%, and were highest in summer and autumn. Intensity ranged from one to five isopods per jellyfish. Juvenile, immature and mature isopods were present. The parasitic anemone A. clavus occurred only between May and September. Prevalences were lower than for the isopod (on 5–20% of jellyfish when present) as was maximum intensity (two anemones per jellyfish). Catostylus mosaicus appears to play an important role in the life history of a suite of symbionts, and the present study is the first to examine temporal changes in the association of the jellyfish with two of these symbionts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.