BackgroundTobacco smoking is responsible for over 90% of lung cancer cases, and yet the precise molecular alterations induced by smoking in lung that develop into cancer and impact survival have remained obscure.Methodology/Principal FindingsWe performed gene expression analysis using HG-U133A Affymetrix chips on 135 fresh frozen tissue samples of adenocarcinoma and paired noninvolved lung tissue from current, former and never smokers, with biochemically validated smoking information. ANOVA analysis adjusted for potential confounders, multiple testing procedure, Gene Set Enrichment Analysis, and GO-functional classification were conducted for gene selection. Results were confirmed in independent adenocarcinoma and non-tumor tissues from two studies. We identified a gene expression signature characteristic of smoking that includes cell cycle genes, particularly those involved in the mitotic spindle formation (e.g., NEK2, TTK, PRC1). Expression of these genes strongly differentiated both smokers from non-smokers in lung tumors and early stage tumor tissue from non-tumor tissue (p<0.001 and fold-change >1.5, for each comparison), consistent with an important role for this pathway in lung carcinogenesis induced by smoking. These changes persisted many years after smoking cessation. NEK2 (p<0.001) and TTK (p = 0.002) expression in the noninvolved lung tissue was also associated with a 3-fold increased risk of mortality from lung adenocarcinoma in smokers.Conclusions/SignificanceOur work provides insight into the smoking-related mechanisms of lung neoplasia, and shows that the very mitotic genes known to be involved in cancer development are induced by smoking and affect survival. These genes are candidate targets for chemoprevention and treatment of lung cancer in smokers.
We investigate two-stage parametric and two-stage semi-parametric estimation procedures for the association parameter in copula models for bivariate survival data where censoring in either or both components is allowed. We derive asymptotic properties of the estimators and compare their performance by simulations. Both parametric and semi-parametric estimators of the association parameter are efficient at independence, and the parameter estimates in the margins have high efficiency and are robust to misspecification of dependency structures. In addition, we propose a consistent variance estimator for the semi-parametric estimator of the association parameter. We apply the proposed methods to an AIDS data set for illustration.
Despite the existence of morphologically indistinguishable disease, patients with advanced ovarian tumors display a broad range of survival end points. We hypothesize that gene expression profiling can identify a prognostic signature accounting for these distinct clinical outcomes. To resolve survival-associated loci, gene expression profiling was completed for an extensive set of 185 (90 optimal/95 suboptimal) primary ovarian tumors using the Affymetrix human U133A microarray. Cox regression analysis identified probe sets associated with survival in optimally and suboptimally debulked tumor sets at a P value of <0.01. Leave-one-out cross-validation was applied to each tumor cohort and confirmed by a permutation test. External validation was conducted by applying the gene signature to a publicly available array database of expression profiles of advanced stage suboptimally debulked tumors. The prognostic signature successfully classified the tumors according to survival for suboptimally (P = 0.0179) but not optimally debulked (P = 0.144) patients. The suboptimal gene signature was validated using the independent set of tumors (odds ratio, 8.75; P = 0.0146).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.