The lipophilic character of quercetin suggests that it can cross enterocyte membranes via simple diffusion. Therefore, it should be more bioavailable than its glucosides, which require preliminary hydrolysis or active transport for absorption. However, the published human studies show that quercetin is less bioavailable than its glucosides. Assuming that low bioavailability of quercetin aglycone provided to humans as a pure substance is the result of its low solubility in the digestive tract, we studied its bioavailability from dietary sources in which quercetin was dispersed in the food matrix. In a randomized crossover study, 9 volunteers took a single dose of either shallot flesh (99.2% quercetin glucosides and 0.8% quercetin aglycone) or dry shallot skin (83.3% quercetin aglycone and 16.7% quercetin glucosides), providing 1.4 mg quercetin per kg of body weight. Blood samples were collected before and after consumption of shallot preparations. Plasma quercetin was measured on HPLC with electrochemical detection after plasma enzymatic treatment. The maximum plasma quercetin concentration of 1.02 +/- 0.13 micromol/L was reached at 2.33 +/- 0.50 h after shallot flesh consumption compared with 3.95 +/- 0.62 micromol/L at 2.78 +/- 0.15 h after dry skin consumption. The area under the concentration-time curve after dry skin consumption was 47.23 +/- 7.53 micromol x h(-1) x L(-1) and was significantly higher than that after shallot flesh intake (22.23 +/- 2.32 micromol x h(-1) x L(-1)). When provided along with dietary sources, quercetin aglycone is more bioavailable than its glucosides in humans. Results point to the food matrix as a key factor.
The content of glucosinolates (GLS), ascorbigen, and ascorbic acid in white cabbage (Brassica oleracea var. capitata cv. Taler) cultivated in different seasons (summer and winter) was determined, before and after spontaneous and starter-induced fermentation. Different salt concentrations (0.5% NaCl or 1.5% NaCl) were used for sauerkraut production. Glucoiberin, sinigrin, and glucobrassicin were dominating in raw white cabbage cultivated either in winter or summer seasons. Ascorbigen precursor, glucobrassicin, was found higher in cabbage cultivated in winter (2.54 μmol/g dw) than those grown in summer (1.83 μmol/g dw). Cabbage fermented for 7 d was found to contain only traces of some GLS irrespective of the fermentation conditions used. Ascorbigen synthesis occurred during white cabbage fermentation. Brining cabbage at low salt concentration (0.5% NaCl) improved ascorbigen content in sauerkraut after 7 d of fermentation at 25• C. The highest ascorbigen concentration was observed in low-sodium (0.5% NaCl) sauerkraut produced from cabbage cultivated in winter submitted to either natural (109.0 μmol/100 g dw) or starter-induced fermentation (108.3 and 104.6 μmol/100 g dw in cabbages fermented by L. plantarum and L. mesenteroides, respectively). Ascorbic acid content was found higher in cabbage cultivated in summer and fermentation process led to significant reductions. Therefore, the selection of cabbages with high glucobrassicin content and the production of low-sodium sauerkrauts may provide enhanced health benefits towards prevention of chronic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.