The premotor cortex is one of the fundamental structures composing the neural networks of the human brain. It is implicated in many behaviors and cognitive tasks, ranging from movement to attention and eye-related activity. Therefore, neural circuits that are related to premotor cortex have been studied to clarify their connectivity and/or role in different tasks. In the present work, we aimed to investigate the propagation of the neural activity evoked in the dorsal premotor cortex using transcranial magnetic stimulation/electroencephalography (TMS/EEG). Toward this end, interest was focused on the neural dynamics elicited in long-ranging temporal and spatial networks. Twelve healthy volunteers underwent a single-pulse TMS protocol in a resting condition with eyes closed, and the evoked activity, measured by EEG, was compared to a sham condition in a time window ranging from 45 ms to about 200 ms after TMS. Spatial and temporal investigations were carried out with sLORETA. TMS was found to induce propagation of neural activity mainly in the contralateral sensorimotor and frontal cortices, at about 130 ms after delivery of the stimulus. Different types of analyses showed propagated activity also in posterior, mainly visual, regions, in a time window between 70 and 130 ms. Finally, a likely “rebounding” activation of the sensorimotor and frontal regions, was observed in various time ranges. Taken together, the present findings further characterize the neural circuits that are driven by dorsal premotor cortex activation in healthy humans.
Detecting P300 slow-cortical ERPs poses a considerable challenge in signal processing due to the complex and non-stationary characteristics of a single-trial EEG signal. EEG-based neurofeedback training is a possible strategy to improve the social abilities in Autism-Spectrum Disorder (ASD) subjects. This paper presents a BCI P300 ERPs based protocol optimization used for the enhancement of joint-attention skills in ASD subjects, using a robust logistic regression with Automatic Relevance Determination based on full Variational Bayesian inference (VB-ARD). The performance of the proposed approach was investigated utilizing the IFMBE 2019 Scientific Challenge Competition dataset, which consisted of 15 ASD subjects who underwent a total of 7 BCI sessions spread over 4 months. The results showed that the proposed VB-ARD approach eliminates irrelevant channels and features effectively, producing a robust sparse model with 81.5 ± 0.12 % accuracy in relatively short modeling computational time 19.3 ± 1.4 sec, and it outperforms the standard regularized logistic regression in terms of accuracy and speed needed to produce the BCI model. This paper demonstrated the effectiveness of the probabilistic approach using Bayesian inference for the production of a robust BCI model. Considering the good classification accuracy over sessions and fast modeling time the proposed method could be a useful tool used for the BCI based protocol for the improvement of joint-attention ability in ASD subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.