In the light of growing global epidemic of type 2 diabetes mellitus (T2DM), significant efforts are made to discover next-generation biomarkers for early detection of the disease. Multiple mechanisms including inflammatory response, abnormal insulin secretion and glucose metabolism contribute to the development of T2DM. Platelet activation, on the other hand, is known to be one of the underlying mechanisms of atherosclerosis, which is a common T2DM complication that frequently results in ischemic events at later stages of the disease. Available data suggest that platelets contain large amounts of microRNAs (miRNAs) that are found in circulating body fluids, including the blood. Since miRNAs have been illustrated to play an important role in metabolic homeostasis through regulation of multiple genes, they attracted substantial scientific interest as diagnostic and prognostic biomarkers in T2DM. Various miRNAs, as well as their target genes are implicated in the complex pathophysiology of T2DM. This article will first review the different miRNAs studied in the context of T2DM and platelet reactivity, and subsequently present original results from bioinformatic analyses of published reports, identifying a common gene ( PRKAR1A ) linked to glucose metabolism, blood coagulation and insulin signalling and targeted by miRNAs in T2DM. Moreover, miRNA–target gene interaction networks built upon Gene Ontology information from electronic databases were developed. According to our results, miR-30a-5p, miR-30d-5p and miR-30c-5p are the most widely regulated miRNAs across all specified ontologies, hence they are the most promising biomarkers of T2DM to be investigated in future clinical studies.
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors that plays a crucial role in the development of the nervous system while supporting the survival of existing neurons and instigating neurogenesis. Altered levels of BDNF, both in the circulation and in the central nervous system (CNS), have been reported to be involved in the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), multiple sclerosis (MS), and ischemic stroke. MicroRNAs (miRNAs) are a class of non-coding RNAs found in body fluids such as peripheral blood and cerebrospinal fluid. Several different miRNAs, and their target genes, are recognized to be involved in the pathophysiology of neurodegenerative and neurovascular diseases. Thus, they present as promising biomarkers and a novel treatment approach for CNS disorders. Currently, limited studies provide viable evidence of miRNA-mediated post-transcriptional regulation of BDNF. The aim of this review is to provide a comprehensive assessment of the current knowledge regarding the potential diagnostic and prognostic values of miRNAs affecting BDNF expression and its role as a CNS disorders and neurovascular disease biomarker. Moreover, a novel therapeutic approach in neurodegenerative diseases and ischemic stroke targeting miRNAs associated with BDNF will be discussed.
The epidemic of diabetes mellitus (DM) necessitates the development of novel therapeutic and preventative strategies to attenuate complications of this debilitating disease. Diabetic cardiomyopathy (DCM) is a frequent disorder affecting individuals diagnosed with DM characterized by left ventricular hypertrophy, diastolic and systolic dysfunction and myocardial fibrosis in the absence of other heart diseases. Progression of DCM is associated with impaired cardiac insulin metabolic signaling, increased oxidative stress, impaired mitochondrial and cardiomyocyte calcium metabolism, and inflammation. Various non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), as well as their target genes are implicated in the complex pathophysiology of DCM. It has been demonstrated that miRNAs and lncRNAs play an important role in maintaining homeostasis through regulation of multiple genes, thus they attract substantial scientific interest as biomarkers for diagnosis, prognosis and as a potential therapeutic strategy in DM complications. This article will review the different miRNAs and lncRNA studied in the context of DM, including type 1 and type 2 diabetes and the contribution of pathophysiological mechanisms including inflammatory response, oxidative stress, apoptosis, hypertrophy and fibrosis to the development of DCM .
In recent years, ischemic stroke (IS) has been one of the major causes of disability and mortality worldwide. The general mechanism of IS is based on reduced blood supply to neuronal tissue, resulting in neuronal cell damage by various pathological reactions. One of the main techniques for acute IS treatment entails advanced surgical approaches for restoration of cerebral blood supply but this is often associated with secondary brain injury, also known as ischemic reperfusion injury (I/R injury). Many researches have come to emphasize the significant role of long non-coding RNAs (lncRNAs) in IS, especially in I/R injury and their potential as therapeutic approaches. LncRNAs are non-protein transcripts that are able to regulate cellular processes and gene expression. Further, lncRNAs have been shown to be involved in neuronal signaling pathways. Several lncRNAs are recognized as key factors in the physiological and pathological processes of IS. In this review, we discuss the role of lncRNAs in neuronal injury mechanisms and their association with brain neuroprotection. Moreover, we identify the lncRNAs that show the greatest potential as novel therapeutic approaches in IS, which therefore merit further investigation in preclinical research.
To investigate the association of liver metabolite trimethylamine N-oxide (TMAO) with cardiovascular disease (CV)-related and all-cause mortality in patients with acute coronary syndrome (ACS) who underwent percutaneous coronary intervention. Our prospective observational study enrolled 292 patients with ACS. Plasma concentrations of TMAO were measured during the hospitalization for ACS. Observation period lasted seven yr in median. Adjusted Cox-regression analysis was used for prediction of mortality. ROC curve analysis revealed that increasing concentrations of TMAO levels assessed at the time point of ACS significantly predicted the risk of CV mortality (c-index=0.78, p < 0.001). The cut-off value of >4 μmol/L, labeled as high TMAO level (23% of study population), provided the greatest sum of sensitivity (85%) and specificity (80%) for the prediction of CV mortality and was associated with a positive predictive value of 16% and a negative predictive value of 99%. A multivariate Cox regression model revealed that high TMAO level was a strong and independent predictor of CV death (HR = 11.62, 95% CI: 2.26–59.67; p = 0.003). High TMAO levels as compared with low TMAO levels were associated with the highest risk of CV death in a subpopulation of patients with diabetes mellitus (27.3 vs. 2.6%; p = 0.004). Although increasing TMAO levels were also significantly associated with all-cause mortality, their estimates for diagnostic accuracy were low. High TMAO level is a strong and independent predictor of long-term CV mortality among patients presenting with ACS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.