Functionalizing implant surfaces is critical for improving their performance. An integrated approach was employed to develop a multifunctional implant coating based on oxygen plasma-modified parylene C and drug-loaded, biodegradable poly(dl-lactide-co-glycolide) (PLGA). The key functional attributes of the coating (i.e., anti-corrosion, biocompatible, anti-infection, and therapeutic) were thoroughly characterized at each fabrication step by spectroscopic, microscopic, and biologic methods and at different scales, ranging from molecular, through the nano- and microscales to the macroscopic scale. The chemistry of each layer was demonstrated separately, and their mutual affinity was shown to be indispensable for the development of versatile coatings for implant applications.
Shape-memory polymers (SMPs) that combine shape-memory, biodegradability, and controlled drug release properties are very promising for medical and pharmaceutical application. Moreover, incorporation of antirestenotic drug into SMP biodegradable stent seems to be an interesting solution because of possibility to combine the mechanical support that provides stent and also drug elution. The aim of our study was to analyze the effect of incorporation of sirolimus into poly(L-lactide-co-glycolide-co-trimethylene carbonate) on physicochemical and mechanical properties, degradation, and shape-memory effect of the terpolymer. For this purpose, sirolimus was incorporated into the terpolymer by injection molding method. It has been demonstrated that drug-free terpolymer after injection molding characterized insignificant changes in terpolymer composition. Degradation of materials during processing was not observed. Incorporation of drug molecules did not change shape-memory properties of terpolymer.1 H-and 13 C-NMR spectra of poly(lactide-co-glycolide-co-trimethylene carbonate) confirmed that changes during degradation were similar for terpolymer and terpolymer with sirolimus. Sustained and regular release of sirolimus was observed. The developed material presents potential for biomedical and pharmaceutical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.