ERp57 is an endoplasmic reticulum (ER) resident thiol disulfide oxidoreductase. Using the gene trap technique, we created a ERp57-deficient mouse model. Targeted deletion of the Pdia3 gene, which encodes ERp57, in mice is embryonic lethal at embryonic day (E) 13.5. -Galactosidase reporter gene analysis revealed that ERp57 is expressed early on during blastocyst formation with the highest expression in the inner cell mass. In early stages of mouse embryonic development (E11.5) there is a relatively low level of expression of ERp57. As the embryos developed, ERp57 became highly expressed in both the brain and the lungs (E15.5 and E18.5). The absence of ERp57 has no impact on ER morphology; expression of ER-associated chaperones and folding enzymes, ER stress, or apoptosis. ERp57 has been reported to interact with STAT3 (signal transducer and activatoroftranscription)-DNAcomplexes.WeshowherethatSTAT3-dependent signaling is increased in the absence of ERp57 and this can be rescued by expression of ER-targeted ERp57 but not by cytoplasmic-targeted protein, indicating that ERp57 affects STAT3 signaling from the lumen of the ER. ERp57 effects on STAT3 signaling are enhanced by ER luminal complex formation between ERp57 and calreticulin. In conclusion, we show that ERp57 deficiency in mouse is embryonic lethal at E13.5 and ERp57-dependent modulation of STAT3 signaling may contribute to this phenotype.
The chaperone calreticulin plays important roles in a variety of processes in the endoplasmic reticulum (ER) of animal cells, such as Ca2+ signaling and protein folding. Although the functions of calreticulin are well characterized in animals, only indirect evidence is available for plants. To increase our understanding of plant calreticulins we introduced one of the Arabidopsis isoforms, AtCRT1a, into calreticulin-deficient (crt-/-) mouse embryonic fibroblasts. As a result of calreticulin deficiency, the mouse crt-/- fibroblasts have decreased levels of Ca2+ in the ER and impaired protein folding abilities. Expression of the AtCRT1a in mouse crt-/- fibroblasts rescued these phenotypes, i.e. AtCRT1a restored the Ca2+-holding capacity and chaperone functions in the ER of the mouse crt-/- fibroblasts, demonstrating that the animal sorting machinery was also functional for a plant protein, and that basic calreticulin functions are conserved across the Kingdoms. Expression analyses using a beta-glucuronidase (GUS)-AtCRT1a promoter construct revealed high expression of CRT1a in root tips, floral tissues and in association with vascular bundles. To assess the impact of AtCRT1a in planta, we generated Atcrt1a mutant plants. The Atcrt1a mutants exhibited increased sensitivity to the drug tunicamycin, an inducer of the unfolded protein response. We therefore conclude that AtCRT1a is an alleviator of the tunicamycin-induced unfolded protein response, and propose that the use of the mouse crt-/- fibroblasts as a calreticulin expression system may prove useful to assess functionalities of calreticulins from different species.
BackgroundCardiac fibrosis attributed to excessive deposition of extracellular matrix proteins is a major cause of heart failure and death. Cardiac fibrosis is extremely difficult and challenging to treat in a clinical setting due to lack of understanding of molecular mechanisms leading to cardiac fibrosis and effective anti-fibrotic therapies. The objective in this study was to examine whether unfolded protein response (UPR) pathway mediates cardiac fibrosis and whether a pharmacological intervention to modulate UPR can prevent cardiac fibrosis and preserve heart function.Methodology/Principal FindingsWe demonstrate here that the mechanism leading to development of fibrosis in a mouse with increased expression of calreticulin, a model of heart failure, stems from impairment of endoplasmic reticulum (ER) homeostasis, transient activation of the unfolded protein response (UPR) pathway and stimulation of the TGFβ1/Smad2/3 signaling pathway. Remarkably, sustained pharmacologic inhibition of the UPR pathway by tauroursodeoxycholic acid (TUDCA) is sufficient to prevent cardiac fibrosis, and improved exercise tolerance.ConclusionsWe show that the mechanism leading to development of fibrosis in a mouse model of heart failure stems from transient activation of UPR pathway leading to persistent remodelling of cardiac tissue. Blocking the activation of the transiently activated UPR pathway by TUDCA prevented cardiac fibrosis, and improved prognosis. These findings offer a window for additional interventions that can preserve heart function.
Endoplasmic reticulum (ER) is an essential sub-cellular compartment of the eukaryotic cell performing many diverse functions essential for the cell and the whole organism. ER molecular chaperones and folding enzymes are multidomain proteins that are designed to support nascent proteins entering ER lumen to achieve their native conformation, mediate post-translational modification, prevent misfolded protein aggregation, and facilitate exit from the ER. Typically the role of ER chaperones expands beyond protein folding. Here, we illustrate the multifunctional nature of many ER associated molecular chaperones and folding enzymes and unique functional overlap of these proteins all designed to support the many functions of the ER membrane. V C 2014 IUBMB Life, 66(5): [318][319][320][321][322][323][324][325][326] 2014
Calnexin is a type I integral endoplasmic reticulum (ER) membrane chaperone involved in folding of newly synthesized (glycol)proteins. In this study, we used beta-galactosidase reporter gene knock-in and reverse transcriptase polymerase chain reaction (RT-PCR) to investigate activation of the calnexin gene during embryonic development. We showed that the calnexin gene was activated in neuronal tissue at the early stages of embryonic development but remained low in the heart, intestine, and smooth muscle. At early stages of embryonic development, large quantities of calnexin messenger RNA (mRNA) were also found in neuronal tissue and liver. There was no detectable calnexin mRNA in the heart, lung, and intestine. The absence of calnexin had no significant effect on ER stress response (unfolded protein response, UPR) at the tissue level as tested by IRE1-dependent splicing of Xbp1 mRNA. In contrast, non-stimulated calnexin-deficient cells showed increased activation of IRE1, as measured by RT-PCR and luciferase reporter gene analysis of splicing of Xbp1 mRNA and activation of the BiP promoter. This indicates that cnx (-/-) cells have increased constitutively active UPR. Importantly, cnx (-/-) cells have significantly increased proteasomal activity, which may play a role in the adaptive mechanisms addressing the acute ER stress observed in the absence of calnexin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.