De novo mutations (DNMs) in protein-coding genes are a well-established cause of developmental disorders (DD). However, known DD-associated genes only account for a minority of the observed excess of such DNMs. To identify novel DD-associated genes, we integrated healthcare and research exome sequences on 31,058 DD parent-offspring trios, and developed a simulation-based statistical test to identify gene-specific enrichments of DNMs. We identified 285 significantly DD-associated genes, including 28 not previously robustly associated with DDs. Despite detecting more DD-associated genes than in any previous study, much of the excess of DNMs of protein-coding genes remains unaccounted for. Modelling suggests that over 1,000 novel DD-associated genes await discovery, many of which are likely to be less penetrant than the currently known genes. Research access to clinical diagnostic datasets will be critical for completing the map of dominant DDs.
Histone lysine methyltransferases (KMTs) and demethylases (KDMs) underpin gene regulation. Here we demonstrate that variants causing haploinsufficiency of KMTs and KDMs are frequently encountered in individuals with developmental disorders. Using a combination of human variation databases and existing animal models, we determine 22 KMTs and KDMs as additional candidates for dominantly inherited developmental disorders. We show that KMTs and KDMs that are associated with, or are candidates for, dominant developmental disorders tend to have a higher level of transcription, longer canonical transcripts, more interactors, and a higher number and more types of post-translational modifications than other KMT and KDMs. We provide evidence to firmly associate KMT2C, ASH1L, and KMT5B haploinsufficiency with dominant developmental disorders. Whereas KMT2C or ASH1L haploinsufficiency results in a predominantly neurodevelopmental phenotype with occasional physical anomalies, KMT5B mutations cause an overgrowth syndrome with intellectual disability. We further expand the phenotypic spectrum of KMT2B-related disorders and show that some individuals can have severe developmental delay without dystonia at least until mid-childhood. Additionally, we describe a recessive histone lysine-methylation defect caused by homozygous or compound heterozygous KDM5B variants and resulting in a recognizable syndrome with developmental delay, facial dysmorphism, and camptodactyly. Collectively, these results emphasize the significance of histone lysine methylation in normal human development and the importance of this process in human developmental disorders. Our results demonstrate that systematic clinically oriented pathway-based analysis of genomic data can accelerate the discovery of rare genetic disorders.
We estimated the genome-wide contribution of recessive coding variation from 6,040 families from the Deciphering Developmental Disorders study. The proportion of cases attributable to recessive coding variants was 3.6% in patients of European ancestry, compared to 50% explained by de novo coding mutations. It was higher (31%) in patients with Pakistani ancestry, due to elevated autozygosity. Half of this recessive burden is attributable to known genes. We identified two genes not previously associated with recessive developmental disorders, KDM5B and EIF3F, and functionally validated them with mouse and cellular models. Our results suggest that recessive coding variants account for a small fraction of currently undiagnosed non-consanguineous individuals, and that the role of noncoding variants, incomplete penetrance, and polygenic mechanisms need further exploration.
Family trees have vast applications in fields as diverse as genetics, anthropology, and economics. However, the collection of extended family trees is tedious and usually relies on resources with limited geographical scope and complex data usage restrictions. We collected 86 million profiles from publicly available online data shared by genealogy enthusiasts. After extensive cleaning and validation, we obtained population-scale family trees, including a single pedigree of 13 million individuals. We leveraged the data to partition the genetic architecture of human longevity and to provide insights into the geographical dispersion of families. We also report a simple digital procedure to overlay other data sets with our resource.
Whole genome sequencing (WGS) studies have estimated the human germline mutation rate per basepair per generation (~1.2 × 10 −8 ) to be higher than in mice (3.5–5.4 × 10 −9 ). In humans, most germline mutations are paternal in origin and numbers of mutations per offspring increase with paternal and maternal age. Here we estimate germline mutation rates and spectra in six multi-sibling mouse pedigrees and compare to three multi-sibling human pedigrees. In both species we observe a paternal mutation bias, a parental age effect, and a highly mutagenic first cell division contributing to the embryo. We also observe differences between species in mutation spectra, in mutation rates per cell division, and in the parental bias of mutations in early embryogenesis. These differences between species likely result from both species-specific differences in cellular genealogies of the germline, as well as biological differences within the same stage of embryogenesis or gametogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.