The ability to selectively eradicate oncogene-addicted tumors while reducing systemic toxicity has endeared targeted therapies as a treatment strategy. Nevertheless, development of acquired resistance limits the benefits and durability of such a regime. Here we report evidence of enhanced reliance on mitochondrial oxidative phosphorylation (OXPHOS) in oncogene-addicted cancers manifesting acquired resistance to targeted therapies. To that effect, we describe a novel OXPHOS targeting activity of the small molecule compound, OPB-51602 (OPB). Of note, a priori treatment with OPB restored sensitivity to targeted therapies. Furthermore, cancer cells exhibiting stemness markers also showed selective reliance on OXPHOS and enhanced sensitivity to OPB. Importantly, in a subset of patients who developed secondary resistance to EGFR tyrosine kinase inhibitor (TKI), OPB treatment resulted in decrease in metabolic activity and reduction in tumor size. Collectively, we show here a switch to mitochondrial OXPHOS as a key driver of targeted drug resistance in oncogene-addicted cancers. This metabolic vulnerability is exploited by a novel OXPHOS inhibitor, which also shows promise in the clinical setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.