a b s t r a c tAn efficient resource allocation is a fundamental requirement in high performance computing (HPC) systems. Many projects are dedicated to large-scale distributed computing systems that have designed and developed resource allocation mechanisms with a variety of architectures and services. In our study, through analysis, a comprehensive survey for describing resource allocation in various HPCs is reported. The aim of the work is to aggregate under a joint framework, the existing solutions for HPC to provide a thorough analysis and characteristics of the resource management and allocation strategies. Resource allocation mechanisms and strategies play a vital role towards the performance improvement of all the HPCs classifications. Therefore, a comprehensive discussion of widely used resource allocation strategies deployed in HPC environment is required, which is one of the motivations of this survey. Moreover, we have classified the HPC systems into three broad categories, namely: (a) cluster, (b) grid, and (c) aforementioned systems are cataloged into pure software and hybrid/hardware solutions. The system classification is used to identify approaches followed by the implementation of existing resource allocation strategies that are widely presented in the literature.
Two major constraints demand more consideration for energy efficiency in cluster computing: (a) operational costs, and (b) system reliability. Increasing energy efficiency in cluster systems will reduce energy consumption, excess heat, lower operational costs, and improve system reliability. Based on the energy-power relationship, and the fact that energy consumption can be reduced examples. The survey is concluded with a brief discussion and some assumptions about the possible future directions that could be explored to improve the energy efficiency in cluster computing.
Reducing energy consumption for high end computing can bring various benefits such as, reduce operating costs, increase system reliability, and environment respect. This paper aims to develop scheduling heuristics and to present application experience for reducing power consumption of parallel tasks in a cluster with the Dynamic Voltage Frequency Scaling (DVFS) technique. In this paper, formal models are presented for precedence-constrained parallel tasks, DVFS enabled clusters, and energy consumption. This paper studies the slack time for non-critical jobs, extends their execution time and reduces the energy consumption without increasing the task's execution time as a whole. Additionally, Green Service Level Agreement is also considered in this paper. By increasing task execution time within an affordable limit, this paper develops scheduling heuristics to reduce energy consumption of a tasks execution and discusses the relationship between energy consumption and task execution time. Models and scheduling heuristics are examined with a simulation study. Test results justify the design and implementation of proposed energy aware scheduling heuristics in the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.