Abstract-Cloud computing data centers are becoming increasingly popular for the provisioning of computing resources. The cost and operating expenses of data centers have skyrocketed with the increase in computing capacity. Several governmental, industrial, and academic surveys indicate that the energy utilized by computing and communication units within a data center contributes to a considerable slice of the data center operational costs.In this paper, we present a simulation environment for energy-aware cloud computing data centers. Along with the workload distribution, the simulator is designed to capture details of the energy consumed by data center components (servers, switches, and links) as well as packet-level communication patterns in realistic setups.The simulation results obtained for two-tier, three-tier, and three-tier high-speed data center architectures demonstrate the effectiveness of the simulator in utilizing power management schema, such as voltage scaling, frequency scaling, and dynamic shutdown that are applied to the computing and networking components 1 .
Abstract-Smartphones are now capable of supporting a wide range of applications, many of which demand an ever increasing computational power. This poses a challenge because smartphones are resource-constrained devices with limited computation power, memory, storage, and energy. Fortunately, the cloud computing technology offers virtually unlimited dynamic resources for computation, storage, and service provision. Therefore, researchers envision extending cloud computing services to mobile devices to overcome the smartphones constraints. The challenge in doing so is that the traditional smartphone application models do not support the development of applications that can incorporate cloud computing features and requires specialized mobile cloud application models. This article presents mobile cloud architecture, offloading decision affecting entities, application models classification, the latest mobile cloud application models, their critical analysis and future research directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.