Abstract-Cloud computing data centers are becoming increasingly popular for the provisioning of computing resources. The cost and operating expenses of data centers have skyrocketed with the increase in computing capacity. Several governmental, industrial, and academic surveys indicate that the energy utilized by computing and communication units within a data center contributes to a considerable slice of the data center operational costs.In this paper, we present a simulation environment for energy-aware cloud computing data centers. Along with the workload distribution, the simulator is designed to capture details of the energy consumed by data center components (servers, switches, and links) as well as packet-level communication patterns in realistic setups.The simulation results obtained for two-tier, three-tier, and three-tier high-speed data center architectures demonstrate the effectiveness of the simulator in utilizing power management schema, such as voltage scaling, frequency scaling, and dynamic shutdown that are applied to the computing and networking components 1 .
Abstract-Cloud computing data centers are becoming increasingly popular for the provisioning of computing resources. The cost and operating expenses of data centers have skyrocketed with the increase in computing capacity. Several governmental, industrial, and academic surveys indicate that the energy utilized by computing and communication units within a data center contributes to a considerable slice of the data center operational costs.In this paper, we present a simulation environment for energy-aware cloud computing data centers. Along with the workload distribution, the simulator is designed to capture details of the energy consumed by data center components (servers, switches, and links) as well as packet-level communication patterns in realistic setups.The simulation results obtained for two-tier, three-tier, and three-tier high-speed data center architectures demonstrate the effectiveness of the simulator in utilizing power management schema, such as voltage scaling, frequency scaling, and dynamic shutdown that are applied to the computing and networking components 1 .
Mobile crowdsensing (MCS) has gained significant attention in recent years and has become an appealing paradigm for urban sensing. For data collection, MCS systems rely on contribution from mobile devices of a large number of participants or a crowd. Smartphones, tablets, and wearable devices are deployed widely and already equipped with a rich set of sensors, making them an excellent source of information. Mobility and intelligence of humans guarantee higher coverage and better context awareness if compared to traditional sensor networks. At the same time, individuals may be reluctant to share data for privacy concerns. For this reason, MCS frameworks are specifically designed to include incentive mechanisms and address privacy concerns. Despite the growing interest in the research community, MCS solutions need a deeper investigation and categorization on many aspects that span from sensing and communication to system management and data storage. In this paper, we take the research on MCS a step further by presenting a survey on existing works in the domain and propose a detailed taxonomy to shed light on the current landscape and classify applications, methodologies and architectures. Our objective is not only to analyze and consolidate past research but also to outline potential future research directions and synergies with other research areas.
In modern data centers, energy consumption accounts for a considerably large slice of operational expenses. The existing work in data center energy optimization is focusing only on job distribution between computing servers based on workload or thermal profiles. This paper underlines the role of communication fabric in data center energy consumption and presents a scheduling approach that combines energy efficiency and network awareness, named DENS. The DENS methodology balances the energy consumption of a data center, individual job performance, and traffic demands. The proposed approach optimizes the tradeoff between job consolidation (to minimize the amount of computing servers) and distribution of traffic patterns (to avoid hotspots in the data center network).
a b s t r a c tAn efficient resource allocation is a fundamental requirement in high performance computing (HPC) systems. Many projects are dedicated to large-scale distributed computing systems that have designed and developed resource allocation mechanisms with a variety of architectures and services. In our study, through analysis, a comprehensive survey for describing resource allocation in various HPCs is reported. The aim of the work is to aggregate under a joint framework, the existing solutions for HPC to provide a thorough analysis and characteristics of the resource management and allocation strategies. Resource allocation mechanisms and strategies play a vital role towards the performance improvement of all the HPCs classifications. Therefore, a comprehensive discussion of widely used resource allocation strategies deployed in HPC environment is required, which is one of the motivations of this survey. Moreover, we have classified the HPC systems into three broad categories, namely: (a) cluster, (b) grid, and (c) aforementioned systems are cataloged into pure software and hybrid/hardware solutions. The system classification is used to identify approaches followed by the implementation of existing resource allocation strategies that are widely presented in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.