Abstract-Among the panoply of applications enabled by the Internet of Things (IoT), smart and connected health care is a particularly important one. Networked sensors, either worn on the body or embedded in our living environments, make possible the gathering of rich information indicative of our physical and mental health. Captured on a continual basis, aggregated, and effectively mined, such information can bring about a positive transformative change in the health care landscape. In particular, the availability of data at hitherto unimagined scales and temporal longitudes coupled with a new generation of intelligent processing algorithms can: (a) facilitate an evolution in the practice of medicine, from the current post facto diagnose-andtreat reactive paradigm, to a proactive framework for prognosis of diseases at an incipient stage, coupled with prevention, cure, and overall management of health instead of disease, (b) enable personalization of treatment and management options targeted particularly to the specific circumstances and needs of the individual, and (c) help reduce the cost of health care while simultaneously improving outcomes. In this paper, we highlight the opportunities and challenges for IoT in realizing this vision of the future of health care.
Mobile crowdsensing (MCS) has gained significant attention in recent years and has become an appealing paradigm for urban sensing. For data collection, MCS systems rely on contribution from mobile devices of a large number of participants or a crowd. Smartphones, tablets, and wearable devices are deployed widely and already equipped with a rich set of sensors, making them an excellent source of information. Mobility and intelligence of humans guarantee higher coverage and better context awareness if compared to traditional sensor networks. At the same time, individuals may be reluctant to share data for privacy concerns. For this reason, MCS frameworks are specifically designed to include incentive mechanisms and address privacy concerns. Despite the growing interest in the research community, MCS solutions need a deeper investigation and categorization on many aspects that span from sensing and communication to system management and data storage. In this paper, we take the research on MCS a step further by presenting a survey on existing works in the domain and propose a detailed taxonomy to shed light on the current landscape and classify applications, methodologies and architectures. Our objective is not only to analyze and consolidate past research but also to outline potential future research directions and synergies with other research areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.