Mobile crowdsensing (MCS) has gained significant attention in recent years and has become an appealing paradigm for urban sensing. For data collection, MCS systems rely on contribution from mobile devices of a large number of participants or a crowd. Smartphones, tablets, and wearable devices are deployed widely and already equipped with a rich set of sensors, making them an excellent source of information. Mobility and intelligence of humans guarantee higher coverage and better context awareness if compared to traditional sensor networks. At the same time, individuals may be reluctant to share data for privacy concerns. For this reason, MCS frameworks are specifically designed to include incentive mechanisms and address privacy concerns. Despite the growing interest in the research community, MCS solutions need a deeper investigation and categorization on many aspects that span from sensing and communication to system management and data storage. In this paper, we take the research on MCS a step further by presenting a survey on existing works in the domain and propose a detailed taxonomy to shed light on the current landscape and classify applications, methodologies and architectures. Our objective is not only to analyze and consolidate past research but also to outline potential future research directions and synergies with other research areas.
Abstract-Cloud computing has become a de facto approach for service provisioning over the Internet. It operates relying on a pool of shared computing resources available on demand and usually hosted in data centers. Assessing performance and energy efficiency of data centers becomes fundamental. Industries use a number of metrics to assess efficiency and energy consumption of cloud computing systems, focusing mainly on the efficiency of IT equipment, cooling and power distribution systems. However, none of the existing metrics is precise enough to distinguish and analyze the performance of data center communication systems from IT equipment. This paper proposes a framework of new metrics able to assess performance and energy efficiency of cloud computing communication systems, processes and protocols. The proposed metrics have been evaluated for the most common data center architectures including fat tree three-tier, BCube, DCell and Hypercube.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.