The expansion of big data and the evolution of Internet of Things (IoT) technologies have played an important role in the feasibility of smart city initiatives. Big data offer the potential for cities to obtain valuable insights from a large amount of data collected through various sources, and the IoT allows the integration of sensors, radiofrequency identification, and Bluetooth in the real-world environment using highly networked services. The combination of the IoT and big data is an unexplored research area that has brought new and interesting challenges for achieving the goal of future smart cities. These new challenges focus primarily on problems related to business and technology that enable cities to actualize the vision, principles, and requirements of the applications of smart cities by realizing the main smart environment characteristics. In this paper, we describe the existing communication technologies and smart-based applications used within the context of smart cities. The visions of big data analytics to support smart cities are discussed by focusing on how big data can fundamentally change urban populations at different levels. Moreover, a future business model that can manage big data for smart cities is proposed, and the business and technological research challenges are identified. This study can serve as a benchmark for researchers and industries for the future progress and development of smart cities in the context of big data.
With the integration of mobile devices into daily life, smartphones are privy to increasing amounts of sensitive information. Sophisticated mobile malware, particularly Android malware, acquire or utilize such data without user consent. It is therefore essential to devise effective techniques to analyze and detect these threats. This article presents a comprehensive survey on leading Android malware analysis and detection techniques, and their effectiveness against evolving malware. This article categorizes systems by methodology and date to evaluate progression and weaknesses. This article also discusses evaluations of industry solutions, malware statistics, and malware evasion techniques and concludes by supporting future research paths.
Mobile devices have become a significant part of people's lives, leading to an increasing number of users involved with such technology. The rising number of users invites hackers to generate malicious applications. Besides, the security of sensitive data available on mobile devices is taken lightly. Relying on currently developed approaches is not sufficient, given that intelligent malware keeps modifying rapidly and as a result becomes more difficult to detect. In this paper, we propose an alternative solution to evaluating malware detection using the anomaly-based approach with machine learning classifiers. Among the various network traffic features, the four categories selected are basic information, content based, time based and connection based. The evaluation utilizes two datasets: public (i.e. MalGenome) and private (i.e. self-collected). Based on the evaluation results, both the Bayes network and random forest classifiers produced more accurate readings, with a 99.97 % true-positive rate (TPR) as opposed to the multi-layer perceptron with only 93.03 % on the MalGenome dataset. However, this experiment revealed that the k-nearest neighbor classifier efficiently detected the latest Android malware with an 84.57 % truepositive rate higher than other classifiers. Communicated by V. Loia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.