Mobile devices have become a significant part of people's lives, leading to an increasing number of users involved with such technology. The rising number of users invites hackers to generate malicious applications. Besides, the security of sensitive data available on mobile devices is taken lightly. Relying on currently developed approaches is not sufficient, given that intelligent malware keeps modifying rapidly and as a result becomes more difficult to detect. In this paper, we propose an alternative solution to evaluating malware detection using the anomaly-based approach with machine learning classifiers. Among the various network traffic features, the four categories selected are basic information, content based, time based and connection based. The evaluation utilizes two datasets: public (i.e. MalGenome) and private (i.e. self-collected). Based on the evaluation results, both the Bayes network and random forest classifiers produced more accurate readings, with a 99.97 % true-positive rate (TPR) as opposed to the multi-layer perceptron with only 93.03 % on the MalGenome dataset. However, this experiment revealed that the k-nearest neighbor classifier efficiently detected the latest Android malware with an 84.57 % truepositive rate higher than other classifiers. Communicated by V. Loia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.