We explore two parabolic quantum well (PQW) samples, with and without Bragg mirrors, in order to optimise the building blocks of a Bosonic Cascade Laser. The photoluminescence spectra of a PQW microcavity sample is compared against that of a conventional microcavity with embedded quantum wells (QWs) to demonstrate that the weak coupling lasing in a PQW sample can be achieved. The relaxation dynamics in a conventional QW microcavity and in the PQW microcavity was studied by a non-resonant pump-pump excitation method. Strong difference in the relaxation characteristics between the two samples was found. The semi-classical Boltzmann equations were adapted to reproduce the evolution of excitonic populations within the PQW as a function of the pump power and the output intensity evolution as a function of the pump-pump pulse delay. Fitting the PQW data confirms the anticipated cascade relaxation, paving the way for such a system to produce terahertz radiation.
We show that, when large-area multiplex terahertz semiconductor emitters, that work on diffusion currents and Schottky potentials, are illuminated by ultrashort optical pulses they can radiate a directional electromagnetic terahertz pulse which is controlled by the angular spectrum of the incident optical beam. Using the lens that focuses the incident near-infrared pulse, we have demonstrated THz emission focusing in free space, at the same point where the optical radiation would focus. We investigated the beam waist and Gouy phase shift of the THz emission as a function of frequency. We also show that the polarization profile of the emitted THz can be tailored by the metallic patterning on the semiconductor, demonstrating radial polarization when a circular emitter design is used. Our techniques can be used for fast THz beam steering and mode control for efficiently coupling to waveguides without the need for THz lenses or parabolic mirrors.
Mid-IR supercontinuum sources are a new type of source for the 2-4.5 µm spectrum, but their weight, size and power consumption has previously made them unsuitable for mobile sensing. We demonstrate a highly compact supercontinuum source with a weight of <1 kg and a power consumption of <15 W emitting a spectral brightness comparable to that of a synchrotron and covering the entire 1.8-4.4 µm spectrum. We will also discuss challenges and opportunities of working with a broadband source instead of a single line or tunable source and touch upon the future potential for supercontinuum reaching further into the mid-IR
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.