Recent studies indicate that regulation of cellular oxidative capacity through enhancing mitochondrial biogenesis may be beneficial for neuronal recovery and survival in human neurodegenerative disorders. The peroxisome proliferator-activated receptor ␥ coactivator-1␣ (PGC-1␣) has been shown to be a master regulator of mitochondrial biogenesis and cellular energy metabolism in muscle and liver. The aim of our study was to establish whether PGC-1␣ and PGC-1 control mitochondrial density also in neurons and if these coactivators could be up-regulated by deacetylation. The results demonstrate that PGC-1␣ and PGC-1 control mitochondrial capacity in an additive and independent manner. This effect was observed in all studied subtypes of neurons, in cortical, midbrain, and cerebellar granule neurons. We also observed that endogenous neuronal PGC-1␣ but not PGC-1 could be activated through its repressor domain by suppressing it. Results demonstrate also that overexpression of SIRT1 deacetylase or suppression of GCN5 acetyltransferase activates transcriptional activity of PGC-1␣ in neurons and increases mitochondrial density. These effects were mediated exclusively via PGC-1␣, since overexpression of SIRT1 or suppression of GCN5 was ineffective where PGC-1␣ was suppressed by short hairpin RNA. Moreover, the results demonstrate that overexpression of PGC-1 or PGC-1␣ or activation of the latter by SIRT1 protected neurons from mutant ␣-synuclein-or mutant huntingtin-induced mitochondrial loss. These evidences demonstrate that activation or overexpression of the PGC-1 family of coactivators could be used to compensate for neuronal mitochondrial loss and suggest that therapeutic agents activating PGC-1 would be valuable for treating neurodegenerative diseases in which mitochondrial dysfunction and oxidative damage play an important pathogenic role.Previous studies have shown that the PGC-1 family of coactivators, particularly PGC-1␣, are potent stimulators of mitochondrial respiration and gene transcription in liver, heart, and skeletal muscle. It has been shown that PGC-1␣ acts by activating the nuclear respiratory factors NRF1 and NRF2 that in turn regulate expression of Tfam (mitochondrial transcription factor A), essential for replication, maintenance, and transcription of mitochondrial DNA. PGC-1␣ is also important for the expression of nuclear genes encoding respiratory chain subunits and other proteins that are required for proper mitochondrial functions (1-4).Apart from gene expression, the activity of PGC-1␣ is influenced by posttranscriptional regulation by means of protein phosphorylation, acetylation, and methylation. PGC-1␣ is known to be regulated by p38 mitogen-activated protein kinase through the inhibition of the p160 Myb-binding protein (p160 MBP ) 2 in brown fat cells and myotubes (5, 6). AMPK (AMP-activated protein kinase) phosphorylation of PGC-1␣ initiates many of the important gene-regulatory functions of AMPK in skeletal muscle (7). Acetylation status of PGC-1␣ is, on the other hand, regulated by t...
SummaryMitochondrial fusion-fission dynamics play a crucial role in many important cell processes. These dynamics control mitochondrial morphology, which in turn influences several important mitochondrial properties including mitochondrial bioenergetics and quality control, and they appear to be affected in several neurodegenerative diseases. However, an integrated and quantitative understanding of how fusion-fission dynamics control mitochondrial morphology has not yet been described. Here, we took advantage of modern visualisation techniques to provide a clear explanation of how fusion and fission correlate with mitochondrial length and motility in neurons. Our main findings demonstrate that: (1) the probability of a single mitochondrion splitting is determined by its length; (2) the probability of a single mitochondrion fusing is determined primarily by its motility; (3) the fusion and fission cycle is driven by changes in mitochondrial length and deviations from this cycle serves as a corrective mechanism to avoid extreme mitochondrial length; (4) impaired mitochondrial motility in neurons overexpressing 120Q Htt or Tau suppresses mitochondrial fusion and leads to mitochondrial shortening whereas stimulation of mitochondrial motility by overexpressing Miro-1 restores mitochondrial fusion rates and sizes. Taken together, our results provide a novel insight into the complex crosstalk between different processes involved in mitochondrial dynamics. This knowledge will increase understanding of the dynamic mitochondrial functions in cells and in particular, the pathogenesis of mitochondrial-related neurodegenerative diseases.
The Parkinson's disease‐associated protein kinase PINK1 and ubiquitin ligase Parkin coordinate the ubiquitination of mitochondrial proteins, which marks mitochondria for degradation. Miro1, an atypical GTPase involved in mitochondrial trafficking, is one of the substrates tagged by Parkin after mitochondrial damage. Here, we demonstrate that a small pool of Parkin interacts with Miro1 before mitochondrial damage occurs. This interaction does not require PINK1, does not involve ubiquitination of Miro1 and also does not disturb Miro1 function. However, following mitochondrial damage and PINK1 accumulation, this initial pool of Parkin becomes activated, leading to the ubiquitination and degradation of Miro1. Knockdown of Miro proteins reduces Parkin translocation to mitochondria and suppresses mitophagic removal of mitochondria. Moreover, we demonstrate that Miro1 EF‐hand domains control Miro1's ubiquitination and Parkin recruitment to damaged mitochondria, and they protect neurons from glutamate‐induced mitophagy. Together, our results suggest that Miro1 functions as a calcium‐sensitive docking site for Parkin on mitochondria.
During early development, neurons undergo complex morphological rearrangements to assemble into neuronal circuits and propagate signals. Rapid growth requires a large quantity of building materials, efficient intracellular transport and also a considerable amount of energy. To produce this energy, the neuron should first generate new mitochondria because the pre-existing mitochondria are unlikely to provide a sufficient acceleration in ATP production. Here, we demonstrate that mitochondrial biogenesis and ATP production are required for axonal growth and neuronal development in cultured rat cortical neurons. We also demonstrate that growth signals activating the CaMKKβ, LKB1-STRAD or TAK1 pathways also co-activate the AMPK-PGC-1α-NRF1 axis leading to the generation of new mitochondria to ensure energy for upcoming growth. In conclusion, our results suggest that neurons are capable of signalling for upcoming energy requirements. Earlier activation of mitochondrial biogenesis through these pathways will accelerate the generation of new mitochondria, thereby ensuring energy-producing capability for when other factors for axonal growth are synthesized.
The autophagy protein BECN1/Beclin 1 is known to play a central role in autophagosome formation and maturation. The results presented here demonstrate that BECN1 interacts with the Parkinson disease-related protein PARK2. This interaction does not require PARK2 translocation to mitochondria and occurs mostly in cytosol. However, our results suggest that BECN1 is involved in PARK2 translocation to mitochondria because loss of BECN1 inhibits CCCP- or PINK1 overexpression-induced PARK2 translocation. Our results also demonstrate that the observed PARK2-BECN1 interaction is functionally important. Measurements of the level of MFN2 (mitofusin 2), a PARK2 substrate, demonstrate that depletion of BECN1 prevents PARK2 translocation-induced MFN2 ubiquitination and loss. BECN1 depletion also rescues the MFN2 loss-induced suppression of mitochondrial fusion. In sum, our results demonstrate that BECN1 interacts with PARK2 and regulates PARK2 translocation to mitochondria as well as PARK2-induced mitophagy prior to autophagosome formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.