This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Purpose: To examine the important role that primary care nurse practitioners (NPs) have in providing long-term surveillance and health maintenance for breast, prostate, and colorectal cancer survivors throughout the continuum of cancer care.
Melatonin supplementation has been used as a therapeutic agent for several diseases, yet little is known about the underlying mechanisms by which melatonin synchronizes circadian rhythms. G-protein signaling plays a large role in melatonin-induced phase shifts of locomotor behavior and melatonin receptors activate G-protein-coupled inwardly rectifying potassium (GIRK) channels in Xenopus oocytes. The present study tested the hypothesis that melatonin influences circadian phase and electrical activity within the central clock in the suprachiasmatic nucleus (SCN) through GIRK channel activation. Unlike wild-type littermates, GIRK2 knock-out (KO) mice failed to phase advance wheel-running behavior in response to 3 d subcutaneous injections of melatonin in the late day. Moreover, in vitro phase resetting of the SCN circadian clock by melatonin was blocked by coadministration of a GIRK channel antagonist tertiapin-q (TPQ). Loose-patch electrophysiological recordings of SCN neurons revealed a significant reduction in the average action potential rate in response to melatonin. This effect was lost in SCN slices treated with TPQ and SCN slices from GIRK2 KO mice. The melatonin-induced suppression of firing rate corresponded with an increased inward current that was blocked by TPQ. Finally, application of ramelteon, a potent melatonin receptor agonist, significantly decreased firing rate and increased inward current within SCN neurons in a GIRKdependent manner. These results are the first to show that GIRK channels are necessary for the effects of melatonin and ramelteon within the SCN. This study suggests that GIRK channels may be an alternative therapeutic target for diseases with evidence of circadian disruption, including aberrant melatonin signaling.
The mammalian circadian and sleep-wake systems are closely aligned through their coordinated regulation of daily activity patterns. Although they differ in their anatomical organization and physiological processes, they utilize overlapping regulatory mechanisms that include an assortment of proteins and molecules interacting within the extracellular space. These extracellular factors include proteases that interact with soluble proteins, membrane-attached receptors and the extracellular matrix; and cell adhesion molecules that can form complex scaffolds connecting adjacent neurons, astrocytes and their respective intracellular cytoskeletal elements. Astrocytes also participate in the dynamic regulation of both systems through modulating neuronal appositions, the extracellular space and/or through release of gliotransmitters that can further contribute to the extracellular signaling processes. Together, these extracellular elements create a system that integrates rapid neurotransmitter signaling across longer time scales and thereby adjust neuronal signaling to reflect the daily fluctuations fundamental to both systems. Here we review what is known about these extracellular processes, focusing specifically on areas of overlap between the two systems. We also highlight questions that still need to be addressed. Although we know many of the extracellular players, far more research is needed to understand the mechanisms through which they modulate the circadian and sleep-wake systems.
Glutamate phase shifts the circadian clock in the mammalian suprachiasmatic nucleus (SCN) by activating NMDA receptors. Tissue-type plasminogen activator (tPA) gates phase shifts by activating plasmin to generate m(ature) BDNF, which binds TrkB receptors allowing clock phase shifts. Here, we investigate phase shifting in tPA knockout (tPA ; B6.129S2-Plat /J) mice, and identify urokinase-type plasminogen activator (uPA) as an additional circadian clock regulator. Behavioral activity rhythms in tPA mice entrain to a light-dark (LD) cycle and phase shift in response to nocturnal light pulses with no apparent loss in sensitivity. When the LD cycle is inverted, tPA mice take significantly longer to entrain than C57BL/6J wild-type (WT) mice. SCN brain slices from tPA mice exhibit entrained neuronal activity rhythms and phase shift in response to nocturnal glutamate with no change in dose-dependency. Pre-treating slices with the tPA/uPA inhibitor, plasminogen activator inhibitor-1 (PAI-1), inhibits glutamate-induced phase delays in tPA slices. Selective inhibition of uPA with UK122 prevents glutamate-induced phase resetting in tPA but not WT SCN slices. tPA expression is higher at night than the day in WT SCN, while uPA expression remains constant in WT and tPA slices. Casein-plasminogen zymography reveals that neither tPA nor uPA total proteolytic activity is under circadian control in WT or tPA SCN. Finally, tPA SCN tissue has lower mBDNF levels than WT tissue, while UK122 does not affect mBDNF levels in either strain. Together, these results suggest that either tPA or uPA can support photic/glutamatergic phase shifts of the SCN circadian clock, possibly acting through distinct mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.