Single bouts of aerobic exercise can modulate cortical excitability and executive cognitive function, but less is known about the effect of light-intensity exercise, an intensity of exercise more achievable for certain clinical populations. Fourteen healthy adults (aged 22 to 30) completed the following study procedures twice (≥7 days apart) before and after 30 min of either light aerobic exercise (cycling) or seated rest: neurocognitive battery (multitasking performance, inhibitory control and spatial working memory), paired-pulse TMS measures of cortical excitability. Significant improvements in response times during multitasking performance and increases in intracortical facilitation (ICF) were seen following light aerobic exercise. Light aerobic exercise can modulate cortical excitability and some executive function tasks.Populations with deficits in multitasking ability may benefit from this intervention. K E Y W O R D S cortical excitability, executive function, exercise, neuroplasticity How to cite this article: Morris TP, Fried PJ, Macone J, et al. Light aerobic exercise modulates executive function and cortical excitability. Eur J Neurosci.
Background Alzheimer’s disease (AD) is associated with alterations in cortical perfusion that correlate with cognitive impairment. Recently, neural activity in the gamma band has been identified as a driver of arteriolar vasomotion while, on the other hand, gamma activity induction on preclinical models of AD has been shown to promote protein clearance and cognitive protection. Methods In two open-label studies, we assessed the possibility to modulate cerebral perfusion in 15 mild to moderate AD participants via 40Hz (gamma) transcranial alternating current stimulation (tACS) administered 1 h daily for 2 or 4 weeks, primarily targeting the temporal lobe. Perfusion-sensitive MRI scans were acquired at baseline and right after the intervention, along with electrophysiological recording and cognitive assessments. Results No serious adverse effects were reported by any of the participants. Arterial spin labeling MRI revealed a significant increase in blood perfusion in the bilateral temporal lobes after the tACS treatment. Moreover, perfusion changes displayed a positive correlation with changes in episodic memory and spectral power changes in the gamma band. Conclusions Results suggest 40Hz tACS should be further investigated in larger placebo-controlled trials as a safe, non-invasive countermeasure to increase fast brain oscillatory activity and increase perfusion in critical brain areas in AD patients. Trial registration Studies were registered separately on ClinicalTrials.gov (NCT03290326, registered on September 21, 2017; NCT03412604, registered on January 26, 2018).
Background: Alzheimer’s disease (AD) is characterized by diffuse amyloid-β (Aβ) and phosphorylated Tau (p-Tau) aggregates as well as neuroinflammation. Exogenously-induced 40 Hz gamma oscillations have been showing to reduce Aβ and p-Tau deposition presumably via microglia activation in AD mouse models. Objective: We aimed to translate preclinical data on gamma-induction in AD patients by means of transcranial alternating current stimulation (tACS). Methods: Four participants with mild-to-moderate AD received 1 h of daily 40 Hz (gamma) tACS for 4 weeks (Monday to Friday) targeting the bitemporal lobes (20 h treatment duration). Participant underwent Aβ, p-Tau, and microglia PET imaging with [11C]-PiB, [18F]-FTP, and [11C]-PBR28 respectively, before and after the intervention along with electrophysiological assessment. Results: No adverse events were reported, and an increase in gamma spectral power on EEG was observed after the treatment. [18F]-FTP PET revealed a significant decrease over 2% of p-Tau burden in 3/4 patients following the tACS treatment, primarily involving the temporal lobe regions targeted by tACS and especially mesial regions (e.g., entorhinal cortex). The amount of intracerebral Aβ as measured by [11C]-PiB was not significantly influenced by tACS, whereas 1/4 reported a significant decrease of microglia activation as measured by [11C]-PBR28. Conclusion: tACS seems to represent a safe and feasible option for gamma induction in AD patients, with preliminary evidence of a possible effect on protein clearance partially mimicking what is observed in animal models. Longer interventions and placebo control conditions are needed to fully evaluate the potential for tACS to slow disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.