Abstract. Social hibernation of animals is one of the most important physiological and ecological behaviours. The purpose of the study was the investigation of the influence of the roostsite climate parameters: temperature (T), humidity (Rh) and air flow velocity (v) on the clustering of the Barbastella barbastellus (western barbastelle) during hibernation. The research was carried out in the underground systems of Poland (Central Europe) over a period of 6 years. The range of air parameters changes ranged for T from 6.0 to 12.4 °C, for Rh from 56.4 to 91.8 % and for v from 0.01 to 1.17 m/s. The quantile linear regression method was used for the statistical analysis of the results. The study indicated that the increase in the number of individuals in the hibernaculum occurs with an increase in the product (correlation result) T and v, while a decrease in the size of the group occurs with an increase in the products T and Rh, v and Rh as well as T, v and Rh.
Studies of the efficiency of Ni, Cu and Cd cations removal from water solutions were carried out, with the use of clay limestone, hen eggshells from eggs for consumption and hen eggshells after hatching, which main element is calcium carbonate. Hen eggshells are a waste product, which can be used as a substitute of clay limestone in removing heavy metals from wet flue gas desulphurisation installation. Mixed solutions of Ni, Cu and Cd were used in the research, with the composition similar to the waste water from wet flue gas desulphurisation installation: Ni (0.009-0.053 mmol/dm3), Cu (0.008-0.057 mmol/dm3) and Cd (0.003-0.008 mmol/dm3). The metals were determined by flame atomic absorption spectrophotometry (F-AAS). Kinetics of the process was analysed and equilibrium parameters were estimated, taking into consideration changes of the solutions pH during the process duration. It was demonstrated that the dominating mechanism of cations removal is their binding in hydroxides and carbonates. The studies demonstrated comparable characteristics of hen eggshells versus clay limestone, in the context of their application in removal of heavy metal cations from solutions.
The effect of calcium carbonate on the removal efficiency of cations of the selected heavy metals Cu, Zn and Pb from aqueous solutions using various biosorbents (BS) was investigated under laboratory static conditions. The main mechanism of biosorption of heavy metal cations is ion exchange, whereas the reaction with calcium carbonate results in precipitation of poorly soluble carbonates and hydroxides of the examined heavy metals. Studies conducted under static conditions have shown that the effect of Cu and Zn cations removal from solutions is better when using a mixture of BS and CaCO3 as compared to the effect of process, in which these two components were used separately. Removal efficiency for Cu and Zn has been shown to increase from 20 to 50% depending on the BS used. For the removal of lead cations, a measurable effect is found only for biosorbents whose active centers are saturated with protons (improvement in removal efficiency by about 20%). A synergy effect in the flow system was also investigated. It was found that under the conditions of the experiment, the addition of powdered CaCO3, in a weight ratio of 1 g CaCO3: 15 g BS, increases the removal efficiency of all the metals studied by 20–30%. It has been shown that an important role in the process of heterophasic ion exchange is played by neutralization of protons—desorbed from the biosorbents—with hydroxide ions released into the solution by partial dissolution of CaCO3 and subsequent hydrolysis reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.