Over the past 15 years, fluorescence has become the dominant detection/sensing technology in medical diagnostics and biotechnology. Although fluorescence is a highly sensitive technique, where single molecules can readily be detected, there is still a drive for reduced detection limits. The detection of a fluorophore is usually limited by its quantum yield, autofluorescence of the samples and/or the photostability of the fluorophores; however, there has been a recent explosion in the use of metallic nanostructures to favorably modify the spectral properties of fluorophores and to alleviate some of these fluorophore photophysical constraints. The use of fluorophore-metal interactions has been termed radiative decay engineering, metal-enhanced fluorescence or surface-enhanced fluorescence.
Metallic surfaces can have unusual effects on fluorophores such as increasing or decreasing the rates of radiative decay and the rates of resonance energy transfer (RET). In the present article we describe the effects of metallic silver island films on the emission spectra, lifetimes, and energy transfer for several fluorophores. The fluorophores are not covalently coupled to the silver islands so that there are a range of fluorophore-to-metal distances. We show that proximity of fluorophores to the silver islands results in increased fluorescence intensity, with the largest enhancement for the lowest-quantum-yield fluorophores. Importantly, the metal-induced increases in intensity are accompanied by decreased lifetimes and increased photostability. These effects demonstrate that the silver islands have increased the radiative decay rates of the fluorophore. For solvent-sensitive fluorophores the emission spectra shifted to shorted wavelengths in the presence of the silver islands, which is consistent with a decrease of the apparent lifetime for fluorophores near the metal islands. We also observed an increased intensity and blue spectral shift for the protein human glyoxalase, which displays a low quantum yield for its intrinsic tryptophan emission. In this case the blue shift is thought to be due to increased emission from a buried low-quantum-yield tryptophan residue. Increased intensities were also observed for the intrinsic emission of the nucleic acid bases adenine and thymine and for single-stranded 15-mers poly(T) and poly(C). And finally, we observed increased RET for donors and acceptors in solution and when bound to double-helical DNA. These results demonstrate that metallic particles can be used to modify the emission from intrinsic and extrinsic fluorophores in biochemical systems.
Fluorescence is typically isotropic in space and collected with low efficiency. In this paper we describe surface plasmon-coupled emission (SPCE), which displays unique optical properties and can be collected with an efficiency near 50%. SPCE occurs for fluorophores within about 200 nm of a thin metallic film, in our case a 50-nm-thick silver film on a glass substrate. We show that fluorophore proximity to this film converts the normally isotropic emission into highly directional emission through the glass substrate at a well-defined angle from the normal axis. Depending on the thickness of the polyvinyl alcohol (PVA) film on the silver, the coupling efficiency of sulforhodamine 101 in PVA ranged from 30 to 49%. Directional SPCE was observed whether the fluorophore was excited directly or by the evanescent field due to the surface plasmon resonance. The emission is always polarized perpendicular to the plane of incidence, irrespective of the polarization of the incident light. The lifetimes are not substantially changed, indicating a mechanism somewhat different from that observed previously for the effects of silver particles on fluorophores. Remarkably, the directional emission shows intrinsic spectral resolution because the coupling angles depend on wavelength. The distances over which SPCE occurs, 10 to 200 nm, are useful because a large number of fluorophores can be localized within this volume. The emission of more distant fluorophores does not couple into the glass, allowing background suppression from biological samples. SPCE can be expected to become rapidly useful in a variety of analytical and medical sensing applications.
In recent reports, we demonstrated coupling of excited fluorophores with thin silver or gold films resulting in directional surface plasmon-coupled emission (SPCE) through the silver film and into the glass substrate. In the present report, we describe the spectral and spatial properties of SPCE from sulforhomamine 101 in polyvinyl alcohol (PVA) films of various thicknesses on 50-nm silver films. The PVA thickness varied from about 30 to 750 nm. In thin PVA films with a thickness less than 160 nm, SPCE occurred at a single angle in the glass substrate and displayed only p polarization. As the PVA thickness increased to 300 nm, we observed SPCE at two angles, with different s or p polarization for each angle. For PVA films from 500 to 750 nm thick, we observed SPCE at three or four angles, with alternating s and p polarizations. The multiple rings of SPCE and the unusual s-polarized emission are consistent with the expected waveguide modes in the silver-PVA composite film. However, in contrast to our expectations, the average lifetimes of SPCE were not substantially changed from the PVA films. The observation of SPCE at multiple angles and with different polarization opens new opportunities for the use of SPCE to study anisotropic systems or to develop unique sensing devices.
We report recent achievements in metal-enhanced fluorescence from our laboratory. Several fluorophore systems have been studied on metal particle-coated surfaces and in colloid suspensions. In particular, we describe a distance dependent enhancement on silver island films (SIFs), release of self-quenching of fluorescence near silver particles, and the applications of fluorescence enhancement near metalized surfaces to bioassays. We discuss a number of methods for various shaped silver particle deposition on surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.