The recent discovery that hydrogen sulfide (H2S) is an endogenously produced gaseous second messenger capable of modulating many physiological processes, much like nitric oxide, prompted us to investigate the potential of H2S as a cardioprotective agent. In the current study, we demonstrate that the delivery of H2S at the time of reperfusion limits infarct size and preserves left ventricular (LV) function in an in vivo model of myocardial ischemiareperfusion (MI-R). This observed cytoprotection is associated with an inhibition of myocardial inflammation and a preservation of both mitochondrial structure and function after I-R injury. Additionally, we show that modulation of endogenously produced H2S by cardiac-specific overexpression of cystathionine ␥-lyase (␣-MHC-CGL-Tg mouse) significantly limits the extent of injury. These findings demonstrate that H2S may be of value in cytoprotection during the evolution of myocardial infarction and that either administration of H2S or the modulation of endogenous production may be of clinical benefit in ischemic disorders.
A reduction in stress tolerance is a hallmark of the aging process, and the lowered functional capacity observed in aged organisms is associated with an increased rate of oxidative stress and a greater susceptibility of aged tissues to oxidative injury. In this report, we show that chronic systemic administration of a superoxide dismutase (SOD)/catalase mimetic (EUK-189), delivered over a 1 month period via osmotic pump, prevents heat stress-induced liver injury by dramatically decreasing oxidative damage in aged animals. Widespread liver injury was present in old but not young vehicle-treated rats in response to a 2 day heating protocol. However, SOD/catalase mimetic treatment markedly decreased the hyperthermia-induced liver injury associated in old animals. The reversal of damage with EUK-189 was associated with an improvement in intracellular redox status and a striking reduction in hepatocellular lipid peroxidation. EUK-189 treatment also blocked the activation of activator protein-1 (AP-1), which is a redox-sensitive early response transcription factor involved in the regulation of cellular stress responses. These results demonstrate that oxidative stress plays a unique role in age-related hyperthermic injury and suggest that therapeutic strategies aimed at improving redox potential, such as chronic SOD/catalase mimetic treatment, can prevent the oxidative-mediated damage associated with environmental stress.
Aging is associated with a reduced capacity to cope with physiological stress. To study the molecular mechanisms associated with the decline in stress tolerance that accompanies aging, differences in gene expression between young and old Fischer 344 rats under euthermic control conditions or in response to hyperthermic challenge were evaluated using a cDNA array containing 207 stress-related genes. In the nonstressed control condition, aging resulted in selective upregulation of stress protein genes and transcripts involved in cell growth, death, and signaling, along with a downregulation of genes involved in antioxidant defenses and drug metabolism. Heat stress resulted in a broad induction of genes in the antioxidant and drug metabolism categories and transcripts involved in DNA, RNA, and protein synthesis for both age groups. Old animals had a robust upregulation of genes involved in cell growth, death, and signaling after heat challenge, along with a blunted expression of stress-response genes. In contrast, young animals had a strong induction of stress-response genes after hyperthermic challenge. Changes in expression of selected genes were confirmed by RT-PCR analysis. These findings suggest that aging results in altered gene expression in response to heat stress that is indicative of decreased stress protein transcription and increased expression of oxidative stress-related genes. Thus our findings support the postulate that transcriptional changes in response to a physiological challenge such as hyperthermia contribute to the loss of stress tolerance in older organisms.
Declines in oxidative and thermal stress tolerance are well documented in aging systems. It is thought that these alterations are due in part to reductions in antioxidant defenses. Although intracellular thiols are major redox buffers, their role in maintaining redox homeostasis is not completely understood, particularly during aging, where the reliance on antioxidant enzymes and proteins may be altered. To determine whether thiol supplementation improved the antioxidant enzyme profile of aged animals after heat stress, young and old Fischer 344 rats were treated with N-acetylcysteine (NAC; 4 mmol/kg ip) 2 h before heat stress. Liver tissue was collected before and 0, 30, and 60 min after heat stress. Aging was associated with a significant decline in tissue cysteine and glutathione (GSH) levels. There was also an age-related decrease in copper-zinc superoxide dismutase activity. Heat stress did not alter liver GSH, glutathione disulfide, or antioxidant enzyme activity. With NAC treatment, old animals took up more cysteine than young animals as reflected in an increase in liver GSH and a corresponding decrease in glutamate cysteine ligase activity. Catalase activity increased after NAC treatment in both age groups. Copper-zinc superoxide dismutase activity did not change with heat stress or drug treatment, whereas manganese superoxide dismutase activity was increased in old animals only. These data indicate that GSH synthesis is substrate limited in old animals. Furthermore, aged animals were characterized by large fluctuations in antioxidant enzyme balance after NAC treatment, suggesting a lack of fine control over these enzymes that may leave aged animals susceptible to subsequent stress.
Aging alters cellular responses to both heat and oxidative stress. Thiol-mediated metabolism of reactive oxygen species (ROS) is believed to be important in aging. To begin to determine the role of thiols in aging and heat stress, we depleted liver glutathione (GSH) by administering l-buthionine sulfoximine (BSO) in young (6 mo) and old (24 mo) Fisher 344 rats before heat stress. Animals were given BSO (4 mmol/kg ip) or saline (1 ml ip) 2 h before heat stress and subsequently heated to a core temperature of 41 degrees C over a 90-min period. Liver tissue was collected before and 0, 30, and 60 min after heat stress. BSO inhibited glutamate cysteine ligase (GCL, the rate-limiting enzyme in GSH synthesis) catalytic activity and resulted in a decline in liver GSH and GSSG that was more pronounced in young compared with old animals. Catalase activity did not change between groups until 60 min after heat stress in young BSO-treated rats. Young animals experienced a substantial and persistent reduction in Cu,Zn-SOD activity with BSO treatment. Mn-SOD activity increased with BSO but declined after heat stress. The differences in thiol depletion observed between young and old animals with BSO treatment may be indicative of age-related differences in GSH compartmentalization that could have an impact on maintenance of redox homeostasis and antioxidant balance immediately after a physiologically relevant stress. The significant changes in antioxidant enzyme activity after GSH depletion suggest that thiol status can influence the regulation of other antioxidant enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.