Connexin43 (Cx43) is the predominant testicular gap junction protein and in cases of impaired spermatogenesis, Cx43 expression has been shown to be altered in several mammals. Amongst other functions, Cx43 is supposed to regulate junction formation of the blood-testis barrier (BTB). The aim of the present study was to investigate the expression pattern of different tight junction (TJ) proteins of the murine BTB using SC-specific Cx43 knockout mice (SCCx43KO). Adult homozygous male SCCx43KO mice (SCCx43KO-/-) predominantly show an arrest of spermatogenesis and SC-only tubules that might have been caused by an altered BTB assembly, composition or regulation. TJ molecules claudin-3, -5 and -11 were examined in adult wild type (WT) and SCCx43KO-/- mice using immunohistochemistry (IHC) and quantitative real-time PCR (qRT-PCR). In this context, investigation of single tubules with residual spermatogenesis in SCCx43KO-/- mice was particularly interesting to identify a potential Cx43-independent influence of germ cells (GC) on BTB composition and dynamics. In tubules without residual spermatogenesis, a diffuse cytoplasmic distribution pattern for claudin-11 protein could be demonstrated in mutant mice. Nevertheless, claudin-11 seems to form functional TJ. Claudin-3 and -5 could not be detected immunohistochemically in the seminiferous epithelium of those tubules. Correspondingly, claudin-3 and -5 mRNA expression was decreased, providing evidence of generally impaired BTB dynamics in adult KO mice. Observations of tubules with residual spermatogenesis suggested a Cx43-independent regulation of TJ proteins by GC populations. To determine initial BTB formation in peripubertal SCCx43KO-/- mice, immunohistochemical staining and qRT-PCR of claudin-11 were carried out in adolescent SCCx43KO-/- and WT mice. Additionally, BTB integrity was functionally analysed using a hypertonic glucose fixative. These analyses revealed that SCCx43KO-/- mice formed an intact BTB during puberty in the same time period as WT mice, which however seemed to be accelerated.
The Sertoli cell (SC)-specific knockout (KO) of connexin43 (Cx43) results in spermatogenic arrest at the level of spermatogonia and/or SC-only syndrome. Histology of the interstitial compartment suggests Leydig cell (LC) hyperplasia. Our aim has been to investigate possible effects of the SC-specific KO of Cx43 (SCCx43KO) on interstitial LC. We therefore counted LC via the optical dissector method (per microliter of testicular tissue and per testis) and found LC to be significantly increased in SCCx43KO(-/-) compared with wild-type mice. Semiquantitative western blot together with Cx43 and 3β-hydroxysteroid dehydrogenase immunohistochemistry showed that Cx43 protein was significantly reduced and barely detectable in LC in adult SCCx43KO(-/-) mice. This reduction of Cx43 protein was accompanied by a reduction of Cx43 mRNA as analyzed by laser-assisted microdissection of interstitial cells and subsequent quantitative real-time polymerase chain reaction (PCR). Interestingly, Cx45, another recently detected connexin in LC, was also downregulated. Preliminary qualitative data of LC differentiation markers (Thb2, Hsd3b6) and a steroidogenic marker (Hsd17b3) obtained by reverse transcription plus PCR revealed no obvious differences. Thus, the loss of Cx43 in SC also provokes the downregulation of connexins in interstitial LC at the transcriptional and translational levels. Moreover, SCCx43KO leads to alterations in LC numbers. Despite these alterations, steroidogenesis seems not to be impaired. Further studies, including ultrastructural analysis of the tissue as well as quantitative examination of additional LC markers and testosterone, and functional in vitro experiments, should provide more information about LC differentiation and function in SCCx43KO(-/-) mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.