Cell motility is a critical event in many processes and is underlined by complex signalling interactions. Although many components have been implicated in different forms of cell migration, identification of early key mediators of these events has proved difficult. One potential signalling intermediate, PLCγ1, has previously been implicated in growth-factor-mediated chemotaxis but its position and roles in more-complex motility events remain poorly understood. This study links PLCγ1 to early, integrin-regulated changes leading to cell motility. The key role of PLCγ1 was supported by findings that specific depletion of PLCγ1 by small interfering (si)RNA, or by pharmacological inhibition, or the absence of this isoform in PLCγ1–/– cells resulted in the failure to form cell protrusions and undergo cell spreading and elongation in response to integrin engagement. This integrin-PLCγ1 pathway was shown to underlie motility processes involved in morphogenesis of endothelial cells on basement membranes and invasion of cancer cells into such three-dimensional matrices. By combining cellular and biochemical approaches, we have further characterized this signalling pathway. Upstream of PLCγ1 activity, β1 integrin and Src kinase are demonstrated to be essential for phosphorylation of PLCγ1, formation of protein complexes and accumulation of intracellular calcium. Cancer cell invasion and the early morphological changes associated with cell motility were abolished by inhibition of β1 integrin or Src. Our findings establish PLCγ1 as a key player in integrin-mediated cell motility processes and identify other critical components of the signalling pathway involved in establishing a motile phenotype. This suggests a more general role for PLCγ1 in cell motility, functioning as a mediator of both growth factor and integrin-initiated signals.
Phosphoinositide-specific phospholipase Cγ1 (PLCγ1) is activated downstream of many receptor tyrosine kinases to promote cell motility. Inhibition of this protein is being explored as a therapeutic strategy for blocking cancer cell invasion and metastasis. The clinical development of such cytostatic therapies requires the implementation of pharmacodynamic biomarkers of target modulation. In this study, we use magnetic resonance spectroscopy to explore metabolic biomarkers of PLCγ1 down-regulation in PC3LN3 prostate cancer cells. We show that inhibition of PLCγ1 via an inducible short hairpin RNA system causes a reduction in phosphocholine levels by up to 50% relative to the control as detected by 1 H and 31 P magnetic resonance spectroscopy analyses. This correlated with a rounded-up morphology and reduced cell migration. Interestingly, the fall in phosphocholine levels was not recorded in cells with constitutive PLCγ1 knockdown where the rounded-up phenotype was no longer apparent. This study reveals alterations in metabolism that accompany the cellular effects of PLCγ1 knockdown and highlights phosphocholine as a potential pharmacodynamic biomarker for monitoring the action of inhibitors targeting
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.