Esophageal adenocarcinoma develops on a background of Barrett's esophagus. A number of risk factors have been linked to both conditions, including gastroesophageal reflux and smoking. However, the molecular mechanisms by which these factors influence disease progression remain unclear. One possibility is that risk factors generate promutagenic DNA damage in the esophagus. The comet assay was used to measure DNA damage in esophageal (Barrett's and squamous) and gastric mucosa of Barrett's patients with (n = 24) or without (n = 50) associated adenocarcinoma or high-grade dysplasia in comparison with control patients (squamous mucosa) without Barrett's esophagus (n = 64). Patients completed a questionnaire detailing exposure to some of the known risk factors for Barrett's esophagus and adenocarcinoma. In Barrett's esophagus patients, DNA damage was higher in Barrett's mucosa compared with normal esophageal and gastric mucosa (P < 0.001). In addition, the highest quartile of DNA damage in Barrett's mucosa was associated with an increased risk (odds ratio, 9.4; 95% confidence interval, 1.1-83.4; P = 0.044) of developing adenocarcinoma or highgrade dysplasia compared with DNA damage levels in the lowest quartile. Smoking was associated with higher DNA damage in squamous epithelium in all patient groups (P < 0.01) and in Barrett's mucosa (P < 0.05) in Barrett's esophagus patients only. In controls only, current reflux was associated with higher DNA damage, whereas anti-inflammatory drug use resulted in lower levels. Collectively, these data imply a genotoxic insult to the premalignant Barrett's mucosa that may explain the genetic instability in this tissue and the progression to adenocarcinoma. There is an indication for a role for smoking in inducing DNA damage in esophageal mucosa but an understanding of the role of reflux requires further investigation. (Cancer Epidemiol Biomarkers Prev 2005;14 (3):620 -5)
Barrett's oesophagus (BE) is a pre-malignant metaplastic tissue predisposing to oesophageal adenocarcinoma (EC), and gastro-oesophageal reflux is a risk factor for both conditions. Reflux of acid and bile can cause mucosal injury and initiate chronic inflammation. These processes can induce DNA damage, possibly via an oxidative stress mechanism, thus increasing the likelihood of progression from Barrett's metaplasia to dysplasia and finally carcinoma. The comet assay was optimized for the detection of DNA damage (strand breaks and alkali-labile sites) in oesophageal biopsies, including incorporation of the DNA repair enzyme Fapy-DNA glycosylase (Fpg). Fpg allows the detection of 8-hydroxy-2-deoxyguanosine (8-OHdG) sites, a known pro-mutagenic DNA lesion. BE patients were recruited from BE surveillance clinics and oesophageal biopsies collected at endoscopy. Comet analysis revealed significantly increased (p < 0.001) DNA damage in Barrett's epithelium compared with matched squamous epithelium, with median % tail DNA values of 25.1% (first to third quartile 21.7-29.6%) and 18.6% (first to third quartile 16.9-21.4%), respectively. The median % tail DNA was up to 70% higher in the matched BE tissue compared with squamous epithelium from the same patient. Fpg sensitive sites were demonstrated in both tissue types at similar levels. The raised level of DNA damage in the premalignant BE may contribute to the accumulation of genetic alterations occurring during progression to EC. Understanding these underlying mechanisms provides a basis for cancer prevention strategies in BE patients.
Purpose: The role of genetic susceptibility to esophageal adenocarcinoma and its precursor lesion Barrett esophagus has not been fully elucidated. This study investigated the effect of polymorphisms in the manganese superoxide dismutase (MnSOD) and NAD(P)H:quinone oxidoreductase 1 (NQO1) genes in modulating the risk of developing Barrett esophagus or esophageal adenocarcinoma. Methods: A total of 584 patients (146 esophagitis, 200 Barrett esophagus, 144 esophageal adenocarcinoma, and 94 controls) were genotyped for the MnSOD C14T and NQO1 C609T polymorphisms using polymerase chain reaction and restriction fragment length polymorphism analysis. Results: The NQO1 TT genotype was less common in Barrett esophagus (2.0%) and esophageal adenocarcinoma (1.4%) patients, compared with both esophagitis patients (7.6%) and controls (5.4%). After adjustment for sex, age, body mass index, reflux symptoms, and smoking status, patients with the homozygous TT genotype had a 4.5-fold decreased risk of developing Barrett esophagus (odds ratio ϭ 0.22, 95% confidence interval ϭ 0.07-0.76, P ϭ 0.01) and a 6.2-fold decreased risk of esophageal adenocarcinoma (odds ratio ϭ 0.16, 95% confidence intervals ϭ 0.03-0.94, P ϭ 0.04) compared with individuals with the TC and CC genotypes. No significant differences between groups were observed for the MnSOD polymorphism (P ϭ 0.289). Conclusions:Overall, the results of this study suggest that the NQO1 TT genotype may offer protection from reflux complications such as Barrett esophagus and esophageal adenocarcinoma. Genet Med 2007:9(6):341-347.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.