The controlled conversion of methane to methanol requires CH bond cleavage and CO bond formation. A catalytic cycle incorporating 1,2‐CH‐addition and net oxygen insertion with late transition metals has been proposed for this conversion. This Minireview discusses the current state of the art for each step of the proposed catalytic cycle.
The controlled conversion of hydrocarbons to functionalized products requires selective C-H bond cleavage. This perspective provides an overview of 1,2-CH-addition of hydrocarbons across d(0) transition metal imido complexes and compares and contrasts these to examples of analogous reactions that involve later transition metal amide, hydroxide and alkoxide complexes with d(6) and d(8) metals.
Metal-mediated formation of C−O bonds is an important transformation that can occur by a variety of mechanisms. Recent studies suggest that oxygen-atom insertion into metal−hydrocarbyl bonds in a reaction that resembles the Baeyer−Villiger transformation is a viable process. In an effort to identify promising new systems, this study is designed to assess the impact of metal identity on such O-atom insertions for the reaction [(bpy
Net reductive elimination (RE) of MeX (X = halide or pseudo-halide: Cl(-), CF3CO2(-), HSO4(-), OH(-)) is an important step during Pt-catalyzed hydrocarbon functionalization. Developing Rh(I/III)-based catalysts for alkane functionalization is an attractive alternative to Pt-based systems, but very few examples of RE of alkyl halides and/or pseudo-halides from Rh(III) complexes have been reported. Here, we compare the influence of the ligand donor strength on the thermodynamic potentials for oxidative addition and reductive functionalization using [(t)Bu3terpy]RhCl (1) {(t)Bu3terpy = 4,4',4''-tri-tert-butylpyridine} and [(NO2)3terpy]RhCl (2) {(NO2)3terpy = 4,4',4''-trinitroterpyridine}. Complex 1 oxidatively adds MeX {X = I(-), Cl(-), CF3CO2(-) (TFA(-))} to afford [(t)Bu3terpy]RhMe(Cl)(X) {X = I(-) (3), Cl(-) (4), TFA(-) (5)}. By having three electron-withdrawing NO2 groups, complex 2 does not react with MeCl or MeTFA, but reacts with MeI to yield [(NO2)3terpy]RhMe(Cl)(I) (6). Heating 6 expels MeCl along with a small quantity of MeI. Repeating this experiment but with excess [Bu4N]Cl exclusively yields MeCl, while adding [Bu4N]TFA yields a mixture of MeTFA and MeCl. In contrast, 3 does not reductively eliminate MeX under similar conditions. DFT calculations successfully predict the reaction outcome by complexes 1 and 2. Calorimetric measurements of [(t)Bu3terpy]RhI (7) and [(t)Bu3terpy]RhMe(I)2 (8) were used to corroborate computational models. Finally, the mechanism of MeCl RE from 6 was investigated via DFT calculations, which supports a nucleophilic attack by either I(-) or Cl(-) on the Rh-CH3 bond of a five-coordinate Rh complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.