The dibenzophospholes, synthesized in the 1950s, have recently gained a greater importance, due to their use in organic electronics and the possibility of designing new π-conjugated, optoelectronic materials that incorporate these heterocycles.
Quaternary ammonium and phosphonium salts have been screened for their toxic effect on HeLa and K562 cancer cell lines, as well as on normal HUVEC cells. Tri-n-butyl-n-hexadecylphosphonium bromide, the first phosphonium salt with a halogen anion tested against HeLa cells, was 12 times more potent (IC50 <5 μm after 24 and 48 h) than the clinically used reference compound cisplatin and 17 times more potent than tri-n-hexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide, which, to the best of our knowledge, is the first phosphonium salt to be evaluated in HeLa cells. However, it was inactive against K562 cells (24 and 48 h). According to a caspase-3/7 assay, its toxicity has not been connected with the induction of apoptosis. In contrast, triphenylalkylphosphonium iodides with shorter C1–5 alkyl chains were inactive against HeLa cells but very active against K562 cells (IC50=6–10 μm after 48 h). Phosphonium cations with halide counterions proved to be more potent than those with (CF3SO2)2N− as the anion, as in the anticancer agent NSC 747251, or other anions in molecules with similar alkyl chain lengths. On the other hand, a series of ammonium salts containing a short methylthiomethyl or methoxymethyl side chain revealed low cytotoxicity (IC50 >500 μm after 24 and 48 h) against both HeLa and K562 cancer cell lines as well as normal HUVEC cells, showing that the nontoxic N+CH2YMe (Y=S, O) structural motif in ammonium salts could be suitable for further optimization and development, especially in transfection experiments.
The highly substituted mono‐aryl/alkylthio‐(hetero)acenes prepared in this study have been found to be thermally more stable (Tdecomp.=331–354 °C) than the known di‐aryl/alkylthio‐substituted acenes by an average of 25 °C. They are also much more photostable at 254 and 365 nm (in both argon and air) than the parent anthracene and other reported anthracenes. The most photostable aryl/alkylthio‐anthracenes at 254 nm were found to be 60–70 (in air) and 130 (in argon) times more stable in solution than the unsubstituted anthracene, and much more stable than known EDG/EWG‐substituted anthracenes (EDG=electron‐donating group, EWG=electron‐withdrawing group) with an extended aromatic core. Furthermore, the acenes showed significantly higher photostability at 365 nm in both air and argon. The anthracenes were obtained by the novel thio‐Friedel–Crafts/Bradsher cyclization reaction of hitherto unknown [o‐(1,3‐dithian‐2‐yl)aryl](aryl)methyl thioethers. The developed approach provides a general access to mono‐aryl/alkylthio‐substituted (hetero)acene frameworks containing at least three fused (hetero)aromatic rings. The characteristic feature of this approach, which leads to highly substituted acenes, is that the substituents, unlike in other methods, may be introduced at an early stage of the synthesis. DFT and TD‐DFT calculations confirmed the stabilizing role of the aryl/alkylthio substituent in the mono‐aryl/alkylthio‐substituted anthracenes, which are the most stable anthracenes prepared to date. Their high photostability is mainly due to the quenching of singlet oxygen by the acene and the quenching of the acene S1 state by molecular oxygen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.