Based on CD14 and CD16 expression, human peripheral blood monocytes (MO) can be divided into a major CD14high CD16− population and two minor CD14high CD16+ and CD14dim CD16+ subpopulations. CD14dim CD16+ MO are well characterized and regarded as pro‐inflammatory because upon stimulation produce TNF‐α but little, if any, IL‐10. By contrast, little is known about CD14high CD16+ MO. We investigated the surface expression of selected determinants by CD16+ MO subpopulations, cytokine production, phagocytosis and antigen presentation. We found that both CD16+ subpopulations had a higher expression of HLA‐DR, CD86, CD54 and a lower expression of CD64 than CD14high CD16− population. In addition, CD14high CD16+ MO showed a higher expression of CD11b and TLR4 than CD14dim CD16+ and CD14high CD16− subpopulations. CD14high CD16+ MO exhibited an increased phagocytic activity and a decreased antigen presentation in comparison with CD14dim CD16+. As expected, lipopolysaccharide (LPS)‐stimulated CD14dim CD16+ MO produced TNF‐α but little IL‐10. By contrast, LPS‐stimulated CD14high CD16+ subpopulation produced significantly more IL‐10 than CD14dim CD16+ and CD14high CD16− MO. In conclusion, our data show that human peripheral blood CD16+ MO are heterogeneous in function and consist of two subpopulations: CD14dim CD16+ pro‐inflammatory and CD14high CD16+ with anti‐inflammatory potential.
BackgroundMyeloid-derived suppressor cells (MDSC) are a functional myeloid cell subset that includes myeloid cells with immune suppressive properties. The presence of MDSC has been reported in the peripheral blood of patients with several malignant and non-malignant diseases. So far, direct comparison of MDSC across different diseases and Centers is hindered by technical pitfalls and a lack of standardized methodology. To overcome this issue, we formed a network through the COST Action Mye-EUNITER (www.mye-euniter.eu) with the goal to standardize and facilitate the comparative analysis of human circulating MDSC in cancer, inflammation and infection. In this manuscript, we present the results of the multicenter study Mye-EUNITER MDSC Monitoring Initiative, that involved 13 laboratories and compared circulating MDSC subsets across multiple diseases, using a common protocol for the isolation, identification and characterization of these cells.MethodsWe developed, tested, executed and optimized a standard operating procedure for the isolation and immunophenotyping of MDSC using blood from healthy donors. We applied this procedure to the blood of almost 400 patients and controls with different solid tumors and non-malignant diseases. The latter included viral infections such as HIV and hepatitis B virus, but also psoriasis and cardiovascular disorders.ResultsWe observed that the frequency of MDSC in healthy donors varied substantially between centers and was influenced by technical aspects such as the anticoagulant and separation method used. Expansion of polymorphonuclear (PMN)-MDSC exceeded the expansion of monocytic MDSC (M-MDSC) in five out of six solid tumors. PMN-MDSC expansion was more pronounced in cancer compared with infection and inflammation. Programmed death-ligand 1 was primarily expressed in M-MDSC and e-MDSC and was not upregulated as a consequence of disease. LOX-1 expression was confined to PMN-MDSC.ConclusionsThis study provides improved technical protocols and workflows for the multi-center analysis of circulating human MDSC subsets. Application of these workflows revealed a predominant expansion of PMN-MDSC in solid tumors that exceeds expansion in chronic infection and inflammation.
Secretory leukocyte proteinase inhibitor (SLPI) is a well-established inhibitor of serine proteases such as human neutrophil elastase (HNE) and a NF-κB regulatory agent in immune cells. In this paper, we report that SLPI plays a previously uncharacterized role in regulating activation of plasmacytoid dendritic cells (pDCs). As the main source of IFN type I (IFNI), pDCs are crucial contributors to inflammatory and likely wound-healing responses associated with psoriasis. The mechanisms responsible for activation of pDCs in psoriatic skin are therefore of substantial interest. We demonstrate that in lesional skin of psoriasis patients, SLPI together with its enzymatic target HNE and DNA, is a component of neutrophil extracellular traps (NETs). Whereas SLPI+ neutrophils and NETs were found to colocalize with pDCs in psoriatic skin, a mixture of SLPI with neutrophil DNA and HNE induced a marked production of IFNI by pDCs. IFNI synthesis by stimulated pDCs was dependent on intracellular DNA receptor TLR9. Thus, SLPI may contribute to psoriasis by enabling pDCs to sense extracellular DNA and produce IFNI.
Neutrophil extracellular traps (NETs), DNA webs released into the extracellular environment by activated neutrophils, are thought to play a key role in the entrapment and eradication of microbes. However, NETs are highly cytotoxic and a likely source of autoantigens, suggesting that NET release is tightly regulated. NET formation involves the activity of neutrophil elastase (NE), which cleaves histones, leading to chromatin decondensation. We and others have recently demonstrated that inhibitors of NE, such as secretory leukocyte protease inhibitor (SLPI) and SerpinB1, restrict NET production in vitro and in vivo. SLPI was also identified as a NET component in the lesional skin of patients suffering from the autoinflammatory skin disease psoriasis. SLPI-competent NET-like structures (a mixture of SLPI with neutrophil DNA and NE) stimulated the synthesis of interferon type I (IFNI) in plasmacytoid dendritic cells (pDCs) in vitro. pDCs uniquely respond to viral or microbial DNA/RNA but also to nucleic acids of “self” origin with the production of IFNI. Although IFNIs are critical in activating the antiviral/antimicrobial functions of many cells, IFNIs also play a role in inducing autoimmunity. Thus, NETs decorated by SLPI may regulate skin immunity through enhancing IFNI production in pDCs. Here, we review key aspects of how SLPI and SerpinB1 can control NET production and immunogenic function.
Interferon alpha-producing plasmacytoid dendritic cells (pDC) are crucial contributors to pro-inflammatory or tolerogenic immune responses and are important in autoimmune diseases such as psoriasis. pDC accumulate in the lesional skin of psoriasis patients, but are rarely found in the affected skin of patients with atopic dermatitis (AD). While homeostatic chemokine CXCL12 and inducible pro-inflammatory CXCR3 chemokine ligands may regulate pDC influx to psoriatic skin, the mechanism responsible for selective pDC recruitment in psoriasis vs. AD remains unknown. Circulating pDC from normal donors express a limited number of chemoattractant receptors, including CXCR3 and CMKLR1 (chemokine-like receptor 1). In this work, we demonstrate that circulating pDC from normal donors as well as psoriasis and AD patients express similar levels of CXCR3 and responded similarly in functional migration assays to CXCL10. We next found that blood pDC from normal, AD, and psoriasis patients express functional CMKLR1. In contrast to normal skin, however, lesional skin from psoriasis patients contains the active form of the CMKLR1 ligand chemerin. Furthermore, in affected skin from psoriatic patients the level of active chemerin was generally higher then in AD skin. Taken together, these results indicate that local generation of active chemerin may contribute to pDC recruitment to psoriatic skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.