The human genome project has been recently complemented by whole-genome assessment sequence of 32 mammals and 24 nonmammalian vertebrate species suitable for comparative genomic analyses. Here we anticipate a precipitous drop in costs and increase in sequencing efficiency, with concomitant development of improved annotation technology and, therefore, propose to create a collection of tissue and DNA specimens for 10,000 vertebrate species specifically designated for whole-genome sequencing in the very near future. For this purpose, we, the Genome 10K Community of Scientists (G10KCOS), will assemble and allocate a biospecimen collection of some 16,203 representative vertebrate species spanning evolutionary diversity across living mammals, birds, nonavian reptiles, amphibians, and fishes (ca. 60,000 living species). In this proposal, we present precise counts for these 16,203 individual species with specimens presently tagged and stipulated for DNA sequencing by the G10KCOS. DNA sequencing has ushered in a new era of investigation in the biological sciences, allowing us to embark for the first time on a truly comprehensive study of vertebrate evolution, the results of which will touch nearly every aspect of vertebrate biological enquiry.
We examined the impact of habitat degradation (removal of surface rocks) on an endangered snake species (Hoplocephalus bungaroides, Elapidae) at 23 sites in south-eastern Australia, by quantifying the impact of rock removal on (i) the availability of suitable shelter-sites for the snakes and their major prey species (the velvet gecko, Oedura lesueurii), and (ii) the numbers of snakes and geckos. Our survey showed that both the snakes and the geckos prefer rocks lying on other rocks, rather than on soil, and select rocks of particular sizes. The rocks removed by bush-rock collectors overlap considerably in size (diameter and thickness) and substrate (rock on rock) with those used by broad-headed snakes and velvet geckos. Multivariate path analysis suggests that population densities of broad-headed snakes (as measured by capture rates) may be determined primarily by gecko numbers, which in turn depend upon availability of suitable rocks. In some sites, rock numbers were substantially reduced by anthropogenic disturbance. Thus, our survey data suggest that bush-rock removal has contributed to the endangerment of H. bungaroides.
Dispersal, or the amount of dispersion between an individual's birthplace and that of its offspring, is of great importance in population biology, behavioural ecology and conservation, however, obtaining direct estimates from field data on natural populations can be problematic. The prickly forest skink, Gnypetoscincus queenslandiae, is a rainforest endemic skink from the wet tropics of Australia. Because of its log-dwelling habits and lack of definite nesting sites, a demographic estimate of dispersal distance is difficult to obtain. Neighbourhood size, defined as 4piDsigma2 (where D is the population density and sigma2 the mean axial squared parent-offspring dispersal rate), dispersal and density were estimated directly and indirectly for this species using mark-recapture and microsatellite data, respectively, on lizards captured at a local geographical scale of 3 ha. Mark-recapture data gave a dispersal rate of 843 m2/generation (assuming a generation time of 6.5 years), a time-scaled density of 13 635 individuals * generation/km2 and, hence, a neighbourhood size of 144 individuals. A genetic method based on the multilocus (10 loci) microsatellite genotypes of individuals and their geographical location indicated that there is a significant isolation by distance pattern, and gave a neighbourhood size of 69 individuals, with a 95% confidence interval between 48 and 184. This translates into a dispersal rate of 404 m2/generation when using the mark-recapture density estimation, or an estimate of time-scaled population density of 6520 individuals * generation/km2 when using the mark-recapture dispersal rate estimate. The relationship between the two categories of neighbourhood size, dispersal and density estimates and reasons for any disparities are discussed.
2006. Maximum body size among insular Komodo dragon populations covaries with large prey density. Á/ Oikos 112: 422 Á/429.This study documents variation in maximum body size of Komodo dragons (Varanus komodoensis ) among the four extant island populations in Komodo National Park and compares an indirect measure of deer density, the major prey item for large dragons, to differences in maximum body size among islands. The largest 15% of dragons from the large islands of Komodo and Rinca were significantly longer and heavier than the largest 15% of dragons on the small islands of Gili Motang and Nusa Kode. There was a 33% difference in snout vent length (SVL) between dragons found on Komodo and those found on Gili Motang, with mass varying by more than four-fold. Density of deer pellet groups between islands ranged from 5.869/0.75 groups per transect on Gili Motang to 20.739/1.02 groups per transect on Komodo Island. Maximal dragon SVL and mass was highly positively correlated with this index of deer density. Low prey density on the two small islands could constrain body size via energetic constraints. At present we can not deduce if insular body size variation has arisen through genotypic or phenotypic mechanisms.
To examine the effects of recent habitat fragmentation, we assayed genetic diversity in a rain forest endemic lizard, the prickly forest skink (Gnypetoscincus queenslandiae), from seven forest fragments and five sites in continuous forest on the Atherton tableland of northeastern Queensland, Australia. The rain forest in this region was fragmented by logging and clearing for dairy farms in the early 1900s and most forest fragments studied have been isolated for 50-80 years or nine to 12 skink generations. We genotyped 411 individuals at nine microsatellite DNA loci and found fewer alleles per locus in prickly forest skinks from small rain forest fragments and a lower ratio of allele number to allele size range in forest fragments than in continuous forest, indicative of a decrease in effective population size. In contrast, and as expected for populations with small neighbourhood sizes, neither heterozygosity nor variance in allele size differed between fragments and sites in continuous forests. Considering measures of among population differentiation, there was no increase in FST among fragments and a significant isolation by distance pattern was identified across all 12 sites. However, the relationship between genetic (FST) and geographical distance was significantly stronger for continuous forest sites than for fragments, consistent with disruption of gene flow among the latter. The observed changes in genetic diversity within and among populations are small, but in the direction predicted by the theory of genetic erosion in recently fragmented populations. The results also illustrate the inherent difficulty in detecting genetic consequences of recent habitat fragmentation, even in genetically variable species, and especially when effective population size and dispersal rates are low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.