The equilibrium and transport properties of mixtures of two ionic liquids - [C4C1Im][OAc] and [C4C1Im][C(CN)3] - were determined and interpreted at the molecular level using vibration spectroscopy, NMR and molecular dynamics simulation. The non-ideality of the mixtures [C4C1Im][OAc](1-x)[C(CN)3]x was characterized by V(E) = +0.28 cm(3) mol(-1) (293 K, x = 0.65) and H(E) = -2.2 kJ mol(-1) for x = 0.5. These values could be explained by a rearrangement of the hydrogen-bond network of the mixture that favours the interaction of the acetate anion with the imidazolium cation at position C2. The dynamic properties of the mixture are also dramatically influenced by the composition with a decrease of the viscosity and an increase of self-diffusion coefficients of the ions when the amount of tricyanomethanide anion increases in the mixture.
Classical molecular dynamics (MD) simulation of ˙OH in liquid water at 37 °C has been performed using flexible models of the solute and solvent molecules. We derived the Morse function describing the bond stretching of the radical and the potential for ˙OH-H(2)O interactions, including short-range interactions of hydrogen atoms. Scans of the potential energy surface of the ˙OH-H(2)O complex have been performed using the DFT method with the B3LYP functional and the 6-311G(d,p) basis set. The DFT-derived partial charges, ±0.375e, and the equilibrium bond-length, 0.975 Å, of ˙OH resulted in the dipole moment of 1.76 D. The radical-water radial distribution functions revealed that ˙OH is not built into the solvent structure but it rather occupies distortions or cavities in the hydrogen-bonded network. The solvent structure at 37 °C has been found to be the same as that of pure water. The hydration cage of the radical comprises 13-14 water molecules. The estimated hydration enthalpy -42 ± 5 kJ mol(-1) is comparable with the experimental value -39 ± 6 kJ mol(-1) for 25 °C. Inspection of hydrogen bonds showed the importance of short-range interaction of hydrogen atoms and indicated that neglect of the angular condition greatly overestimates the number of the H-acceptor radical-water bonds. The mean number ̅n = 0.85 of radical-water H-bonds has been calculated using geometric definition of H-bond and ̅n = 0.62 has been obtained when the energetic condition, E(da)≤-8 kJ mol(-1), was additionally considered. The continuous lifetimes of 0.033 ps and 0.024 ps have been estimated for the radical H-donor and the H-acceptor bonds, respectively. Within statistical uncertainty the radical self-diffusion coefficient, (2.9 ± 0.6) × 10(-9) m(2) s(-1), is the same as (3.1 ± 0.5) × 10(-9) m(2) s(-1) calculated for water in solution and in pure solvent. To the best of our knowledge, this is the first study of the ˙OH(aq) properties at a biologically relevant body temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.